Finite models and finitely many variables

Anuj Dawar

Banach Center Publications (1999)

  • Volume: 46, Issue: 1, page 93-117
  • ISSN: 0137-6934

Abstract

top
This paper is a survey of results on finite variable logics in finite model theory. It focusses on the common underlying techniques that unite many such results.

How to cite

top

Dawar, Anuj. "Finite models and finitely many variables." Banach Center Publications 46.1 (1999): 93-117. <http://eudml.org/doc/208925>.

@article{Dawar1999,
abstract = {This paper is a survey of results on finite variable logics in finite model theory. It focusses on the common underlying techniques that unite many such results.},
author = {Dawar, Anuj},
journal = {Banach Center Publications},
keywords = {finite models; fixpoint logics; finite variable logics; complexity classes; survey},
language = {eng},
number = {1},
pages = {93-117},
title = {Finite models and finitely many variables},
url = {http://eudml.org/doc/208925},
volume = {46},
year = {1999},
}

TY - JOUR
AU - Dawar, Anuj
TI - Finite models and finitely many variables
JO - Banach Center Publications
PY - 1999
VL - 46
IS - 1
SP - 93
EP - 117
AB - This paper is a survey of results on finite variable logics in finite model theory. It focusses on the common underlying techniques that unite many such results.
LA - eng
KW - finite models; fixpoint logics; finite variable logics; complexity classes; survey
UR - http://eudml.org/doc/208925
ER -

References

top
  1. [1] S. Abiteboul, M. Y. Vardi, and V. Vianu, Computing with infinitary logic, Theoretical Computer Science, 149:101-128, 1995. Zbl0874.68274
  2. [2] S. Abiteboul, M. Y. Vardi, and V. Vianu, Fixpoint logics, relational machines, and computational complexity, J. ACM, 44:30-56, 1997. Zbl0883.68070
  3. [3] S. Abiteboul and V. Vianu, Datalog extensions for database queries and updates, J. of Computer and System Sciences, 43:62-124, 1991. Zbl0764.68158
  4. [4] S. Abiteboul and V. Vianu, Generic computation and its complexity, in: Proc. 23rd ACM Symposium on the Theory of Computing, 1991. Zbl0764.68158
  5. [5] S. Abiteboul and V. Vianu, Computing with first-order logic, J. of Computer and System Sciences, 50(2):309-335, 1995. Zbl0827.68036
  6. [6] P. Aczel, An introduction to inductive definitions, in: J. Barwise, editor, Handbook of Mathematical Logic. North Holland, 1977. 
  7. [7] F. Afrati, S. S. Cosmadakis, and M. Yannakakis, On Datalog vs. polynomial time, J. Computer and System Sciences, 51:177-196, 1995. Zbl0831.68015
  8. [8] A.V. Aho and J.D. Ullman, Universality of data retrieval languages, in: Proc. 6th ACM Symposium on Principles of Programming Languages, pages 110-117, 1979. 
  9. [9] M. Ajtai and R. Fagin, Reachability is harder for directed than for undirected graphs, Journal of Symbolic Logic, 55:113-150, 1990. Zbl0708.03016
  10. [10] J. Barwise, On Moschovakis closure ordinals, Journal of Symbolic Logic, 42:292-296, 1977. Zbl0367.02021
  11. [11] A. Blass, Y. Gurevich, and D. Kozen, A zero-one law for logic with a fixed point operator Information and Control, 67:70-90, 1985. Zbl0608.68077
  12. [12] B. Bollobás, Random Graphs, Academic Press, 1985. 
  13. [13] A. Chandra and D. Harel, Structure and complexity of relational queries, Journal of Computer and System Sciences, 25:99-128, 1982. Zbl0511.68073
  14. [14] A. Dawar, Feasible Computation through Model Theory. PhD thesis, University of Pennsylvania, 1993. 
  15. [15] A. Dawar, A restricted second order logic for finite structures, Information and Computation, to appear. 
  16. [16] A. Dawar, Types and indiscernibles in finite models, in: J.A. Makowsky, editor, Logic Colloquium '95, Lecture Notes in Logic. Springer, 1997, to appear. Zbl0899.03023
  17. [17] A. Dawar and L. Hella, The expressive power of finitely many generalized quantifiers, Information and Computation, 123(2):172-184, 1995. Zbl0849.68034
  18. [18] A. Dawar, L. Hella, and Ph. G. Kolaitis, Implicit definability and infinitary logic in finite model theory, in: Z. Fülöp and F. Gécseg, editors, ICALP95, volume 944 of LNCS, pages 624-635. Springer, 1995. 
  19. [19] A. Dawar, S. Lindell, and S. Weinstein, Infinitary logic and inductive definability over finite structures, Information and Computation, 119(2):160-175, 1995. Zbl0834.68029
  20. [20] A. Dawar, S. Lindell, and S. Weinstein, First order logic, fixed point logic and linear order, in: H. Kleine-Büning, editor, Computer Science Logic '95, volume 1092 of LNCS, pages 161-177. Springer, 1996. 
  21. [21] M. de Rougemont, Second-order and inductive definability on finite structures, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 33:47-63, 1987. Zbl0652.03032
  22. [22] A. Durand, C. Lautemann, and T. Schwentick, Subclasses of binary NP, Technischer Report 1/96, Institut für Informatik, Johannes Gutenberg-Universität Mainz, 1995. Zbl0901.68076
  23. [23] E. Engeler, Formal Languages: Automata and Structures, Markham, 1968. Zbl0157.01801
  24. [24] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, in: R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, Vol 7, pages 43-73, 1974. Zbl0303.68035
  25. [25] R. Fagin, Probabilities on finite models, Journal of Symbolic Logic, 41(1):50-58, March 1976. Zbl0341.02044
  26. [26] R. Fagin, L.J. Stockmeyer, and M.Y. Vardi, On monadic NP vs. monadic co-NP, Information and Computation, 120(1):78-92, 1995. Zbl0835.68046
  27. [27] Y. V. Glebskiĭ, D. I. Kogan, M.I. Ligon'kiĭ, and V. A. Talanov, Range and degree of realizability of formulas in the restricted predicate calculus, Kibernetika, 2:17-28, 1969. 
  28. [28] M. Grohe, Inversion of the L k -invariants is hard, Unpublished manuscript. 
  29. [29] M. Grohe, Equivalence in finite-variable logics is complete for polynomial time, in: Proceedings of the 37th Annual Symposium on the Foundations of Computer Science. IEEE Computer Society Press, 1996. Zbl0987.03033
  30. [30] M. Grohe, Large finite structures with few L k -types, in: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, 1997. 
  31. [31] Y. Gurevich, Logic and the challenge of computer science, in: E. Börger, editor, Current Trends in Theoretical Computer Science, pages 1-57. Computer Science Press, 1988. 
  32. [32] Y. Gurevich, N. Immerman, and S. Shelah, McColm's conjecture, in: Proc. 9th IEEE Symp. on Logic in Computer Science, pages 10-19, 1994. 
  33. [33] Y. Gurevich and S. Shelah, On finite rigid structures, Journal of Symbolic Logic, 61:549-562, 1996. Zbl0860.03029
  34. [34] I. Hodkinson, Finite variable logics, Revised version of Bull. Europ. Assoc. Theor. Comp. Sci. 51 (Oct 1993) 111-140, 1996. Zbl0788.03051
  35. [35] N. Immerman, Upper and lower bounds for first-order expressibility, J. of Computer and System Sciences, 25:76-98, 1982. Zbl0503.68032
  36. [36] N. Immerman, Relational queries computable in polynomial time, Information and Control, 68:86-104, 1986. Zbl0612.68086
  37. [37] N. Immerman, D S P A C E [ n k ] = V A R [ k + 1 ] , in: Proc. 6th IEEE Symp. on Structure in Complexity Theory, pages 334-340, 1991. 
  38. [38] Ph.G. Kolaitis, On asymptotic probabilities of inductive queries and their decision problem, in: R. Parikh, editor, Logics of Programs, volume 193 of LNCS, pages 153-166. Springer, 1985. 
  39. [39] Ph.G. Kolaitis and M.Y. Vardi, The decision problem for the probabilities of higher-order properties, in: Proc. 19th ACM Symposium on Theory of Computing, pages 425-435, 1987. 
  40. [40] Ph.G. Kolaitis and M.Y. Vardi, Fixpoint logic vs. infinitary logic in finite-model theory, in: Proc. 7th IEEE Symp. on Logic in Computer Science, pages 46-57, 1992. 
  41. [41] Ph.G. Kolaitis and M.Y. Vardi, Infinitary logics and 0-1 laws, Information and Computation, 98(2):258-294, 1992. Zbl0762.03016
  42. [42] Ph.G. Kolaitis and M.Y. Vardi, On the expressive power of Datalog - tools and a case study. J. Computer and System Sciences, 51:110-134, 1995. 
  43. [43] Ph.G. Kolaitis and M.Y. Vardi, On the expressive power of variable confined logics, in: Proc. 11th IEEE Symp. on Logic in Computer Science, pages 348-359, 1996. 
  44. [44] J.F. Lynch, Infinitary logics and very sparse random graphs, in: Proc. 8th IEEE Symposium on Logic in Computer Science, pages 191-198, 1993. 
  45. [45] M. McArthur, The asymptotic behaviour of L ω k on sparse random graphs, in: R.B. Boppana and J.F. Lynch, editors, Logic and Random Structures, pages 53-63. AMS, 1997. Zbl0882.03037
  46. [46] M. McArthur and J. Spencer, Nonconvergence for sparse random graphs, manuscript. 
  47. [47] G. L. McColm, Parametrization over inductive relations of a bounded number of variables, Annals of Pure and Applied Logic, 48:103-134, 1990. Zbl0705.03019
  48. [48] G. L. McColm, When is arithmetic possible?, Annals of Pure and Applied Logic, 50:29-51, 1990. Zbl0711.03018
  49. [49] Y. N. Moschovakis, Elementary Induction on Abstract Structures, North Holland, 1974. 
  50. [50] M. Otto, Bounded Variable Logics and Counting, volume 9 of Lecture Notes in Logic, Springer, 1997. 
  51. [51] B. Poizat, Deux ou trois choses que je sais de L n , J. Symbolic Logic, 47(3):641-658, 1982. Zbl0507.03014
  52. [52] E. Rosen, S. Shelah, and S. Weinstein, k-universal finite graphs, in: R.B. Boppana and J.F. Lynch, editors, Logic and Random Structures, pages 65-77. AMS, 1997. Zbl0882.03034
  53. [53] E. Rosen and S. Weinstein, Preservation theorems in finite model theory, in: D. Leivant, editor, Logic and Computational Complexity, volume 960 of LNCS, pages 480-503. Springer, 1995. 
  54. [54] A. Rubin, Free Algebras in Von Neumann-Bernays-Godel Set Theory and Positive Elementary Inductions in Reasonable Structures, PhD thesis, California Institute of Technology, 1975. 
  55. [55] A. Stolboushkin, Axiomatizable classes of finite models and definability of linear order, in: Proc. 7th IEEE Symp. on Logic in Computer Science, 1992. 
  56. [56] S. Thomas, Theories with finitely many models, J. Symbolic Logic, 51:374-376, 1986. Zbl0622.03022
  57. [57] S. Thomas, Theories with finitely many models II, Unpublished manuscript, 1989. 
  58. [58] J. Tiuryn and P. Urzyczyn, Some relationships between logics of programs and complexity theory, Theoretical Computer Science, 60:83-108, 1988. Zbl0652.03028
  59. [59] J. Tyszkiewicz, On asymptotic probabilities in logics that capture DSPACE(log n), in: Proc. TAPSOFT'93, volume 668 of LNCS. Springer, 1993. 
  60. [60] M. Y. Vardi, The complexity of relational query languages, in: Proc. 14th ACM Symposium on the Theory of Computing, pages 137-146, 1982. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.