A few results on the complexity of classes of identifiable recursive function sets
In this paper the computational complexity of the problem of the approximation of a given dissimilarity measure on a finite set by a -ultrametric on and by a Robinson dissimilarity measure on is investigared. It is shown that the underlying decision problems are NP-complete.
In this paper we survey results and open problems on the structure of additive and hereditary properties of graphs. The important role of vertex partition problems, in particular the existence of uniquely partitionable graphs and reducible properties of graphs in this structure is emphasized. Many related topics, including questions on the complexity of related problems, are investigated.