Cubical approximation and computation of homology
William Kalies; Konstantin Mischaikow; Greg Watson
Banach Center Publications (1999)
- Volume: 47, Issue: 1, page 115-131
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. J. Chou and G. E. Collins, Algorithms for the solution of systems of linear Diophantine equations, SIAM J. Comput., 11:687-708, 1982. Zbl0498.65022
- [2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill, 1992. Zbl1187.68679
- [3] C. J. A. Delfinado and H. Edelsbrunner, An incremental algorithm for Betti numbers of simplicial complexes, in: Proc. 9th Ann, Symp. Comput. Geom., pages 232-239, 1993.
- [4] C. J. A. Delfinado and H. Edelsbrunner, An incremental algorithm for Betti numbers of simplicial complexes on the 3-sphere, Comp. Aided Geom. Design, 12:771-784, 1995. Zbl0873.55007
- [5] M. Dellnitz and A. Hohmann, The computation of unstable manifolds using subdivision and continuation, in: H. W. Broer, S. A. van Gils, I. Hoveijn, and F. Takens, editors, Nonlinear Dynamical Systems and Chaos, PNLDE 19, pages 449-459. Birkhäuser, 1996. Zbl0842.58064
- [6] M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75:293-317, 1997.
- [7] M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, to appear in Chaos. An Interdisciplinary Journal of Nonlinear Science, 1997. Zbl0938.37056
- [8] T. K. Dey, H. Edelsbrunner, and S. Guha, Computational topology, preprint, 1997. Zbl0916.68202
- [9] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987. Zbl0634.52001
- [10] M. Eidenschink, Exploring Global Dynamics: A Numerical Algorithm Based on the Conley Index Theory, PhD thesis, Georgia Institute of Technology, 1995.
- [11] X. G. Fang and G. Havas, On the worst-case complexity of integer gaussian elimination, in: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation ISSAC 97, pages 28-31. ACM Press, 1997. Zbl0916.65038
- [12] J. Friedman, Computing Betti numbers via combinatorial Laplacians, preprint, 1995.
- [13] R. Guder, M. Dellnitz, and E. Kreuzer, An adaptive method for the approximation of the generalized cell mapping, Chaos, Solitons and Fractals, 8(4):525-534, 1997. Zbl0935.37055
- [14] C. S. Iliopoulos, Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix, SIAM J. Comput., 18:658-669, 1989. Zbl0689.68059
- [15] T. Kaczynski, H. Karloff, K. Mischaikow, and M. Mrozek, Introduction to algebraic topology: A computational perspective, book in progress.
- [16] T. Kaczynski, M. Mrozek, and M. Ślusarek, Homology computation by reduction of chain complexes, to appear in Computers & Mathematics with Appl. Zbl0904.55004
- [17] R. Kannan and A. Bachem, Polynomial algorithms for computing the Smith and Hermite normal forms of an integer matrix, SIAM J. Comput., 8:499-507, 1979. Zbl0446.65015
- [18] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, 1984.
- [19] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer-Verlag, 1985. Zbl0575.68059
- [20] H. J. S. Smith, On systems of indeterminate equations and congruences, Philos. Trans. Roy. Soc. London, 151:293-326, 1861.
- [21] A. Storjohann, Near optimal algorithms for computing smith normal forms of integral matrices, in: Proceedings of the 1996 International Symposium on Symbolic and Algebraic Computation ISSAC 96, pages 267-274. ACM Press, 1996. Zbl0914.65043