Directional transition matrix

Hiroshi Kokubu; Konstantin Mischaikow; Hiroe Oka

Banach Center Publications (1999)

  • Volume: 47, Issue: 1, page 133-144
  • ISSN: 0137-6934

Abstract

top
We present a generalization of topological transition matrices introduced in [6].

How to cite

top

Kokubu, Hiroshi, Mischaikow, Konstantin, and Oka, Hiroe. "Directional transition matrix." Banach Center Publications 47.1 (1999): 133-144. <http://eudml.org/doc/208929>.

@article{Kokubu1999,
abstract = {We present a generalization of topological transition matrices introduced in [6].},
author = {Kokubu, Hiroshi, Mischaikow, Konstantin, Oka, Hiroe},
journal = {Banach Center Publications},
keywords = {Conley index; connection matrix; transition matrix; fast-slow systems},
language = {eng},
number = {1},
pages = {133-144},
title = {Directional transition matrix},
url = {http://eudml.org/doc/208929},
volume = {47},
year = {1999},
}

TY - JOUR
AU - Kokubu, Hiroshi
AU - Mischaikow, Konstantin
AU - Oka, Hiroe
TI - Directional transition matrix
JO - Banach Center Publications
PY - 1999
VL - 47
IS - 1
SP - 133
EP - 144
AB - We present a generalization of topological transition matrices introduced in [6].
LA - eng
KW - Conley index; connection matrix; transition matrix; fast-slow systems
UR - http://eudml.org/doc/208929
ER -

References

top
  1. [1] L. Arnold, C. Jones, K. Mischaikow, G. Raugel, Dynamical Systems Montecatini Terme 1994 (ed. R. Johnson), Lecture Notes in Math., Vol. 1609, Springer, 1995. 
  2. [2] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978. 
  3. [3] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989) 781-803. Zbl0708.58021
  4. [4] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, Conley index theory for fast-slow systems, I: One dimensional slow dynamics, to appear in J. Dynam. Diff. Eq. Zbl0945.34029
  5. [5] H. Kokubu, K. Mischaikow, and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations, Nonlinearity 9 (1996), 1263-1280. Zbl0898.34047
  6. [6] C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. A.M.S. 333 (1992), 397-422. Zbl0763.34028
  7. [7] C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414. Zbl0853.58080
  8. [8] K. Mischaikow. M. Mrozek and J. Reineck, Singular index pairs, to appear in J. Dynam. Diff. Eq. Zbl0943.34028
  9. [9] J. Reineck, The connection matrix in Morse-Smale flows, Trans. A.M.S. 322 (1990), 523-545. Zbl0714.58027
  10. [10] J. Reineck, Connecting orbits in one-parameter families of flows, Ergod. Th. & Dynam. Sys. 8* (1988), 359-374. Zbl0675.58034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.