Directional transition matrix
Hiroshi Kokubu; Konstantin Mischaikow; Hiroe Oka
Banach Center Publications (1999)
- Volume: 47, Issue: 1, page 133-144
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Arnold, C. Jones, K. Mischaikow, G. Raugel, Dynamical Systems Montecatini Terme 1994 (ed. R. Johnson), Lecture Notes in Math., Vol. 1609, Springer, 1995.
- [2] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Reg. Conf. Ser. in Math., 38, AMS, Providence, 1978.
- [3] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. AMS 311 (1989) 781-803. Zbl0708.58021
- [4] T. Gedeon, H. Kokubu, K. Mischaikow, H. Oka, and J. Reineck, Conley index theory for fast-slow systems, I: One dimensional slow dynamics, to appear in J. Dynam. Diff. Eq. Zbl0945.34029
- [5] H. Kokubu, K. Mischaikow, and H. Oka, Existence of infinitely many connecting orbits in a singularly perturbed ordinary differential equations, Nonlinearity 9 (1996), 1263-1280. Zbl0898.34047
- [6] C. McCord and K. Mischaikow, Connected simple systems, transition matrices and heteroclinic bifurcations, Trans. A.M.S. 333 (1992), 397-422. Zbl0763.34028
- [7] C. McCord and K. Mischaikow, Equivalence of topological and singular transition matrices in the Conley index, Mich. Math. J. 42 (1995), 387-414. Zbl0853.58080
- [8] K. Mischaikow. M. Mrozek and J. Reineck, Singular index pairs, to appear in J. Dynam. Diff. Eq. Zbl0943.34028
- [9] J. Reineck, The connection matrix in Morse-Smale flows, Trans. A.M.S. 322 (1990), 523-545. Zbl0714.58027
- [10] J. Reineck, Connecting orbits in one-parameter families of flows, Ergod. Th. & Dynam. Sys. 8* (1988), 359-374. Zbl0675.58034