Page 1 Next

Displaying 1 – 20 of 51

Showing per page

A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere

Marc Bonino (2004)

Fundamenta Mathematicae

We provide a topological proof that each orientation reversing homeomorphism of the 2-sphere which has a point of period k ≥ 3 also has a point of period 2. Moreover if such a k-periodic point can be chosen arbitrarily close to an isolated fixed point o then the same is true for the 2-periodic point. We also strengthen this result by proving that if an orientation reversing homeomorphism h of the sphere has no 2-periodic point then the complement of the fixed point set can be covered by invariant...

Attractors with vanishing rotation number

Rafael Ortega, Francisco Ruiz del Portal (2011)

Journal of the European Mathematical Society

Given an orientation-preserving homeomorphism of the plane, a rotation number can be associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative and the rotation number vanishes we prove the existence of a second fixed point. The main tools in the proof are Carath´eodory prime ends and fixed point index. The result is applicable to some concrete problems in the theory of periodic differential equations.

Conley index for set-valued maps: from theory to computation

Tomasz Kaczynski (1999)

Banach Center Publications

Recent results on the Conley index theory for discrete multi-valued dynamical systems with their consequences for the computation of the index for representable maps are recapitulated. The terminology is simplified with respect to previous presentations, some superfluous hypotheses are abandoned and some conclusions are proved in a simpler way.

Conley index in Hilbert spaces and a problem of Angenent and van der Vorst

Marek Izydorek, Krzysztof P. Rybakowski (2002)

Fundamenta Mathematicae

In a recent paper [9] we presented a Galerkin-type Conley index theory for certain classes of infinite-dimensional ODEs without the uniqueness property of the Cauchy problem. In this paper we show how to apply this theory to strongly indefinite elliptic systems. More specifically, we study the elliptic system - Δ u = v H ( u , v , x ) in Ω, - Δ v = u H ( u , v , x ) in Ω, u = 0, v = 0 in ∂Ω, (A1) on a smooth bounded domain Ω in N for "-"-type Hamiltonians H of class C² satisfying subcritical growth assumptions on their first order derivatives....

Conley type index and Hamiltonian inclusions

Zdzisław Dzedzej (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

This paper is based mainly on the joint paper with W. Kryszewski [Dzedzej, Z., Kryszewski, W.: Conley type index applied to Hamiltonian inclusions. J. Math. Anal. Appl. 347 (2008), 96–112.], where cohomological Conley type index for multivalued flows has been applied to prove the existence of nontrivial periodic solutions for asymptotically linear Hamiltonian inclusions. Some proofs and additional remarks concerning definition of the index and special cases are given.

Connection graphs

Piotr Bartłomiejczyk (2006)

Fundamenta Mathematicae

We introduce connection graphs for both continuous and discrete dynamical systems. We prove the existence of connection graphs for Morse decompositions of isolated invariant sets.

Connection matrices and transition matrices

Christopher McCord, James Reineck (1999)

Banach Center Publications

This paper is an introduction to connection and transition matrices in the Conley index theory for flows. Basic definitions and simple examples are discussed.

Connection matrix pairs

David Richeson (1999)

Banach Center Publications

We discuss the ideas of Morse decompositions and index filtrations for isolated invariant sets for both single-valued and multi-valued maps. We introduce the definition of connection matrix pairs and present the theorem of their existence. Connection matrix pair theory for multi-valued maps is used to show that connection matrix pairs obey the continuation property. We conclude by addressing applications to numerical analysis. This paper is primarily an overview of the papers [R1] and [R2].

Connection matrix theory for discrete dynamical systems

Piotr Bartłomiejczyk, Zdzisław Dzedzej (1999)

Banach Center Publications

In [C] and [F1] the connection matrix theory for Morse decomposition is developed in the case of continuous dynamical systems. Our purpose is to study the case of discrete time dynamical systems. The connection matrices are matrices between the homology indices of the sets in the Morse decomposition. They provide information about the structure of the Morse decomposition; in particular, they give an algebraic condition for the existence of connecting orbit set between different Morse sets.

Coproducts and the additivity of the Szymczak index

Kinga Stolot (2005)

Annales Polonici Mathematici

We prove that the index defined by Szymczak in [9] has an additivity property. Moreover we give an abstract theorem for extending coproducts from an initial category to the Szymczak category, which provides a setting for the proof of additivity.

Directional transition matrix

Hiroshi Kokubu, Konstantin Mischaikow, Hiroe Oka (1999)

Banach Center Publications

We present a generalization of topological transition matrices introduced in [6].

Dynamical systems and shapes.

J.J. Sánchez-Gabites (2008)

RACSAM

This survey is an introduction to some of the methods, techniques and concepts from algebraic topology and related areas (homotopy theory, shape theory) which can be fruitfully applied to study problems concerning continuous dynamical systems. To this end two instances which exemplify the interaction between topology and dynamics are considered, namely, Conley’s index theory and the study of some properties of certain attractors.

Equivariant Morse equation

Marcin Styborski (2012)

Open Mathematics

The paper is concerned with the Morse equation for flows in a representation of a compact Lie group. As a consequence of this equation we give a relationship between the equivariant Conley index of an isolated invariant set of the flow given by .x = −∇f(x) and the gradient equivariant degree of ∇f. Some multiplicity results are also presented.

Generalized Conley-Zehnder index

Jean Gutt (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit 1 as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space ( W , Ω ¯ ) , having chosen a given reference...

Currently displaying 1 – 20 of 51

Page 1 Next