Fixed point theory and the K-theoretic trace
Banach Center Publications (1999)
- Volume: 49, Issue: 1, page 137-149
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topGeoghegan, Ross, and Nicas, Andrew. "Fixed point theory and the K-theoretic trace." Banach Center Publications 49.1 (1999): 137-149. <http://eudml.org/doc/208955>.
@article{Geoghegan1999,
abstract = {The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus $K_0$) and 1-parameter fixed point theory (versus $K_1$). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.},
author = {Geoghegan, Ross, Nicas, Andrew},
journal = {Banach Center Publications},
keywords = {zeta-function; K-theory; classical Nielsen theory; torsion},
language = {eng},
number = {1},
pages = {137-149},
title = {Fixed point theory and the K-theoretic trace},
url = {http://eudml.org/doc/208955},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Geoghegan, Ross
AU - Nicas, Andrew
TI - Fixed point theory and the K-theoretic trace
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 137
EP - 149
AB - The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus $K_0$) and 1-parameter fixed point theory (versus $K_1$). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.
LA - eng
KW - zeta-function; K-theory; classical Nielsen theory; torsion
UR - http://eudml.org/doc/208955
ER -
References
top- [Ba] H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155-196. Zbl0365.20008
- [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman, Chicago, 1971. Zbl0216.19601
- [Br] K. S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
- [BG] K. S. Brown and R. Geoghegan, An infinite dimensional torsion-free group, Invent. Math. 77 (1984), 367-381. Zbl0557.55009
- [C] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, New York, 1973. Zbl0261.57009
- [DG] D. Dimovski and R. Geoghegan, One-parameter fixed point theory, Forum Math. 2 (1990), 125-154. Zbl0692.55002
- [F] D. Fried, Homological identities for closed orbits, Invent. Math. 71 (1983), 419-442. Zbl0512.58023
- [G1] R. Geoghegan, Fixed points in finitely dominated compacta: the geometric meaning of a conjecture of H. Bass, in: Shape Theory and Geometric Topology, Lecture Notes in Math. 870, Springer-Verlag, New York, 1981, 6-22.
- [G2] R. Geoghegan, Nielsen fixed point theory, in: Handbook of Geometric Topology, (to be published by Elsevier).
- [GN1] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994), 397-446. Zbl0812.55001
- [GN2] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), 683-719. Zbl0821.55001
- [GN3] R. Geoghegan and A. Nicas, Higher Euler characteristics (I), Enseign. Math. 41 (1995), 3-62. Zbl0842.55002
- [GN4] R. Geoghegan and A. Nicas, A Hochschild homology Euler characteristic for circle actions, K-theory (to appear). Zbl0947.55004
- [GNO] R. Geoghegan, A. Nicas and J. Oprea, Higher Lefschetz traces and spherical Euler characteristics, Trans. Amer. Math. Soc. 348 (1996), 2039-2062. Zbl0859.55003
- [HH] H. M. Hastings and A. Heller, Homotopy idempotents on finite dimensional complexes split, Proc. Amer. Math. Soc. 85 (1982), 619-622. Zbl0513.55011
- [J] B. J. Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172 (1996), 151-185. Zbl0855.55001
- [K] M. A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42.
- [M] J. Milnor, Infinite cyclic coverings, in: Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, 1968, 115-133.
- [R] K. Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936), 586-593.
- [RS] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972. Zbl0254.57010
- [St] J. Stallings, Centerless groups - An algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. Zbl0201.36001
- [Wa] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. 81 (1965), 56-69. Zbl0152.21902
- [W] F. Wecken, Fixpunktklassen, I, II, III, Math. Ann. 117 (1941), 659-671, 118 (1942), 216-234, 118 (1942), 544-577.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.