Fixed point theory and the K-theoretic trace

Ross Geoghegan; Andrew Nicas

Banach Center Publications (1999)

  • Volume: 49, Issue: 1, page 137-149
  • ISSN: 0137-6934

Abstract

top
The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus K 0 ) and 1-parameter fixed point theory (versus K 1 ). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.

How to cite

top

Geoghegan, Ross, and Nicas, Andrew. "Fixed point theory and the K-theoretic trace." Banach Center Publications 49.1 (1999): 137-149. <http://eudml.org/doc/208955>.

@article{Geoghegan1999,
abstract = {The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus $K_0$) and 1-parameter fixed point theory (versus $K_1$). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.},
author = {Geoghegan, Ross, Nicas, Andrew},
journal = {Banach Center Publications},
keywords = {zeta-function; K-theory; classical Nielsen theory; torsion},
language = {eng},
number = {1},
pages = {137-149},
title = {Fixed point theory and the K-theoretic trace},
url = {http://eudml.org/doc/208955},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Geoghegan, Ross
AU - Nicas, Andrew
TI - Fixed point theory and the K-theoretic trace
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 137
EP - 149
AB - The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus $K_0$) and 1-parameter fixed point theory (versus $K_1$). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.
LA - eng
KW - zeta-function; K-theory; classical Nielsen theory; torsion
UR - http://eudml.org/doc/208955
ER -

References

top
  1. [Ba] H. Bass, Euler characteristics and characters of discrete groups, Invent. Math. 35 (1976), 155-196. Zbl0365.20008
  2. [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman, Chicago, 1971. Zbl0216.19601
  3. [Br] K. S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982. 
  4. [BG] K. S. Brown and R. Geoghegan, An infinite dimensional torsion-free F P group, Invent. Math. 77 (1984), 367-381. Zbl0557.55009
  5. [C] M. M. Cohen, A Course in Simple-Homotopy Theory, Springer-Verlag, New York, 1973. Zbl0261.57009
  6. [DG] D. Dimovski and R. Geoghegan, One-parameter fixed point theory, Forum Math. 2 (1990), 125-154. Zbl0692.55002
  7. [F] D. Fried, Homological identities for closed orbits, Invent. Math. 71 (1983), 419-442. Zbl0512.58023
  8. [G1] R. Geoghegan, Fixed points in finitely dominated compacta: the geometric meaning of a conjecture of H. Bass, in: Shape Theory and Geometric Topology, Lecture Notes in Math. 870, Springer-Verlag, New York, 1981, 6-22. 
  9. [G2] R. Geoghegan, Nielsen fixed point theory, in: Handbook of Geometric Topology, (to be published by Elsevier). 
  10. [GN1] R. Geoghegan and A. Nicas, Parametrized Lefschetz-Nielsen fixed point theory and Hochschild homology traces, Amer. J. Math. 116 (1994), 397-446. Zbl0812.55001
  11. [GN2] R. Geoghegan and A. Nicas, Trace and torsion in the theory of flows, Topology 33 (1994), 683-719. Zbl0821.55001
  12. [GN3] R. Geoghegan and A. Nicas, Higher Euler characteristics (I), Enseign. Math. 41 (1995), 3-62. Zbl0842.55002
  13. [GN4] R. Geoghegan and A. Nicas, A Hochschild homology Euler characteristic for circle actions, K-theory (to appear). Zbl0947.55004
  14. [GNO] R. Geoghegan, A. Nicas and J. Oprea, Higher Lefschetz traces and spherical Euler characteristics, Trans. Amer. Math. Soc. 348 (1996), 2039-2062. Zbl0859.55003
  15. [HH] H. M. Hastings and A. Heller, Homotopy idempotents on finite dimensional complexes split, Proc. Amer. Math. Soc. 85 (1982), 619-622. Zbl0513.55011
  16. [J] B. J. Jiang, Estimation of the number of periodic orbits, Pacific J. Math. 172 (1996), 151-185. Zbl0855.55001
  17. [K] M. A. Kervaire, Le théorème de Barden-Mazur-Stallings, Comment. Math. Helv. 40 (1965), 31-42. 
  18. [M] J. Milnor, Infinite cyclic coverings, in: Conference on the Topology of Manifolds (Michigan State Univ., E. Lansing, Mich., 1967), Prindle, Weber & Schmidt, Boston, 1968, 115-133. 
  19. [R] K. Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936), 586-593. 
  20. [RS] C. P. Rourke and B. J. Sanderson, Introduction to Piecewise-Linear Topology, Springer-Verlag, New York, 1972. Zbl0254.57010
  21. [St] J. Stallings, Centerless groups - An algebraic formulation of Gottlieb's theorem, Topology 4 (1965), 129-134. Zbl0201.36001
  22. [Wa] C. T. C. Wall, Finiteness conditions for CW complexes, Ann. of Math. 81 (1965), 56-69. Zbl0152.21902
  23. [W] F. Wecken, Fixpunktklassen, I, II, III, Math. Ann. 117 (1941), 659-671, 118 (1942), 216-234, 118 (1942), 544-577. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.