On the Nielsen fixed point theory for multivalued mappings

Zdzisław Dzedzej

Banach Center Publications (1999)

  • Volume: 49, Issue: 1, page 69-75
  • ISSN: 0137-6934

Abstract

top
We present J. Jezierski's approach to the Nielsen fixed point theory for a broad class of multivalued mappings [Je1]. We also describe some generalizations and different techniques existing in the literature.

How to cite

top

Dzedzej, Zdzisław. "On the Nielsen fixed point theory for multivalued mappings." Banach Center Publications 49.1 (1999): 69-75. <http://eudml.org/doc/208969>.

@article{Dzedzej1999,
abstract = {We present J. Jezierski's approach to the Nielsen fixed point theory for a broad class of multivalued mappings [Je1]. We also describe some generalizations and different techniques existing in the literature.},
author = {Dzedzej, Zdzisław},
journal = {Banach Center Publications},
keywords = {ANR; Reidemeister class; Nielsen classes; index theory},
language = {eng},
number = {1},
pages = {69-75},
title = {On the Nielsen fixed point theory for multivalued mappings},
url = {http://eudml.org/doc/208969},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Dzedzej, Zdzisław
TI - On the Nielsen fixed point theory for multivalued mappings
JO - Banach Center Publications
PY - 1999
VL - 49
IS - 1
SP - 69
EP - 75
AB - We present J. Jezierski's approach to the Nielsen fixed point theory for a broad class of multivalued mappings [Je1]. We also describe some generalizations and different techniques existing in the literature.
LA - eng
KW - ANR; Reidemeister class; Nielsen classes; index theory
UR - http://eudml.org/doc/208969
ER -

References

top
  1. [An] J. Andres, Multiple bounded solutions of differential inclusions: The Nielsen theory approach, Preprint (1997). 
  2. [AC] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, 1984. 
  3. [Bro] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman & Co., Glenview Ill., 1971. 
  4. [Do] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972. 
  5. [Dz1] Z. Dzedzej, Fixed point index theory for a class of non-acyclic multivalued maps, Dissertationes Math. 253 (1985). 
  6. [Dz2] Z. Dzedzej, On Nielsen and Reidemeister relations for set-valued symmetric product maps, CRM Barcelona 76 (1989), 1-8. 
  7. [Gor] L. Górniewicz, Topological approach to differential inclusions, in: Topol. Methods in Diff. Equations and Inclusions, A. Granas and M. Frigon (eds.), NATO ASI 472, 129-190. 
  8. [GGK] L. Górniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point index theory for multivalued mappings of compact ANR's, J. Math. Anal. Appl. 161 (1991), 457-473. Zbl0757.54019
  9. [Je1] J. Jezierski, The Nielsen relation for multivalued maps, Serdica 13 (1987), 174-181. Zbl0652.55004
  10. [Je2] J. Jezierski, An example of finitely-valued fixed point free map, Zesz. Nauk. IM UG 6 (1987), 87-93. Zbl0761.54025
  11. [Jia] B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, AMS, Providence, R.I., 1983. 
  12. [KrM] W. Kryszewski and D. Miklaszewski, The Nielsen number of set-valued maps. An approximation approach, Serdica 15 (1989), 336-344. Zbl0712.55003
  13. [Mas] S. Masih, On the fixed point index and Nielsen fixed point theorem for symmetric product mappings, Fund. Math. 102 (1979), 143-158. Zbl0401.55003
  14. [Mik] D. Miklaszewski, A reduction of the Nielsen fixed point theorem for symmetric product maps to the Lefschetz theorem, Fund. Math. 135 (1990), 175-176. Zbl0715.55004
  15. [S1] H. Schirmer, An index and a Nielsen number for n-valued multifunctions, Fund. Math. 124 (1984), 207-219. Zbl0543.55003
  16. [S2] H. Schirmer, A minimum theorem for n-valued multifunctions, Fund. Math. 126 (1985), 83-92. Zbl0609.55001
  17. [S3] H. Schirmer, A fixed point index for bimaps, Fund. Math. 134 (1990), 93-104. Zbl0708.55001
  18. [S4] H. Schirmer, The least number of fixed points of bimaps, Fund. Math. 137 (1991), 1-8. Zbl0726.55001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.