Classification of Monge-Ampère equations with two variables

Boris Kruglikov

Banach Center Publications (1999)

  • Volume: 50, Issue: 1, page 179-194
  • ISSN: 0137-6934

Abstract

top
This paper deals with the classification of hyperbolic Monge-Ampère equations on a two-dimensional manifold. We solve the local equivalence problem with respect to the contact transformation group assuming that the equation is of general position nondegenerate type. As an application we formulate a new method of finding symmetries. This together with previous author's results allows to state the solution of the classical S. Lie equivalence problem for the Monge-Ampère equations.

How to cite

top

Kruglikov, Boris. "Classification of Monge-Ampère equations with two variables." Banach Center Publications 50.1 (1999): 179-194. <http://eudml.org/doc/209006>.

@article{Kruglikov1999,
abstract = {This paper deals with the classification of hyperbolic Monge-Ampère equations on a two-dimensional manifold. We solve the local equivalence problem with respect to the contact transformation group assuming that the equation is of general position nondegenerate type. As an application we formulate a new method of finding symmetries. This together with previous author's results allows to state the solution of the classical S. Lie equivalence problem for the Monge-Ampère equations.},
author = {Kruglikov, Boris},
journal = {Banach Center Publications},
keywords = {hyperbolic Monge-Ampère equations; contact transformation group; new method of finding symmetries},
language = {eng},
number = {1},
pages = {179-194},
title = {Classification of Monge-Ampère equations with two variables},
url = {http://eudml.org/doc/209006},
volume = {50},
year = {1999},
}

TY - JOUR
AU - Kruglikov, Boris
TI - Classification of Monge-Ampère equations with two variables
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 179
EP - 194
AB - This paper deals with the classification of hyperbolic Monge-Ampère equations on a two-dimensional manifold. We solve the local equivalence problem with respect to the contact transformation group assuming that the equation is of general position nondegenerate type. As an application we formulate a new method of finding symmetries. This together with previous author's results allows to state the solution of the classical S. Lie equivalence problem for the Monge-Ampère equations.
LA - eng
KW - hyperbolic Monge-Ampère equations; contact transformation group; new method of finding symmetries
UR - http://eudml.org/doc/209006
ER -

References

top
  1. [AG] V. I. Arnol'd, A. B. Givental', Symplectic geometry, in: Dynamical Systems IV, Encyclopaedia Math. Sci. 4, Springer, Berlin, 1990, 1-136. 
  2. [Au] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren Math. Wiss. 252, Springer, New York, 1982. Zbl0512.53044
  3. [FN] A. Frölicher, A. Nijenhuis, Theory of vector-valued differential forms I, Nederl. Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 338-359. Zbl0079.37502
  4. [G] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables independantes, tome I, Hermann, Paris, 1896. Zbl27.0264.04
  5. [Ha] J. Haantjes, On X m -forming sets of eigenvectors, Nederl. Akad. Wetensch. Proc. Ser. A 58 = Indag. Math. 17 (1955), 158-162. Zbl0068.14903
  6. [KLV] I. Krasil'shchik, V. Lychagin, A. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Adv. Stud. Contemp. Math. 1, Gordon and Breach, New York, 1986. 
  7. [Kr1] B. S. Kruglikov, Some classificational problems in four dimensional geometry: distributions, almost complex structures and Monge-Ampère equations (in Russian), Mat. Sb. 189 no. 11 (1998), 61-74; e-print: http:/xxx.lanl.gov/abs/dg-ga/9611005. 
  8. [Kr2] B. S. Kruglikov, Symplectic and contact Lie algebras with an application to Monge-Ampère equations (in Russian), Trudy Mat. Inst. Steklov 221 (1998), 232-246; e-print: http:/xxx.lanl.gov/abs/dg-ga/9709004. Zbl1032.53067
  9. [Ku] A. Kushner, Symplectic geometry of mixed type equations, in: The Interplay between Differential Geometry and Differential Equations, V. V. Lychagin (ed.), Amer. Math. Soc. Transl. ser. 2, 167, Amer. Math. Soc., Providence, 1995, 131-142. Zbl0843.58125
  10. [Lie] S. Lie, Gesammelte Abhandlungen, Band VI, Aschehoug, Oslo, and Teubner, Leipzig, 1922. 
  11. [Ly1] V. V. Lychagin, Contact geometry and nonlinear second order differential equations, Uspekhi Mat. Nauk 34 no. 1 (1979), 137-165 (in Russian); English transl.: Russian Math. Surveys 34 (1979), 149-180. 
  12. [Ly2] V. Lychagin, Lectures on Geometry of Differential Equations, Ciclo di conferenze tenute presso il Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università 'La Sapienza', Roma, 1992. 
  13. [LRC] V. V. Lychagin, V. N. Rubtsov, I. V. Chekalov, A classification of Monge-Ampère equations, Ann. Sci. École Norm. Sup. (4) 26 (1993), 281-308. Zbl0789.58078
  14. [M] T. Morimoto, Le problème d'équivalence des équations de Monge-Ampère, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), A25-A28. Zbl0425.35023
  15. [NN] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost-complex manifolds, Ann. Math. (2) 65 (1957), 391-404. Zbl0079.16102
  16. [R] A. Rakhimov, Singularities of Riemann invariants, Funktsional. Anal. i Prilozhen. 27 no. 1 (1993), 46-59 (in Russian); English transl.: Funct. Anal. Appl. 27 (1993), 39-50. 
  17. [S] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. Zbl0129.13102
  18. [T] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82. Zbl0206.50503

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.