Classification of Monge-Ampère equations with two variables
Banach Center Publications (1999)
- Volume: 50, Issue: 1, page 179-194
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topKruglikov, Boris. "Classification of Monge-Ampère equations with two variables." Banach Center Publications 50.1 (1999): 179-194. <http://eudml.org/doc/209006>.
@article{Kruglikov1999,
abstract = {This paper deals with the classification of hyperbolic Monge-Ampère equations on a two-dimensional manifold. We solve the local equivalence problem with respect to the contact transformation group assuming that the equation is of general position nondegenerate type. As an application we formulate a new method of finding symmetries. This together with previous author's results allows to state the solution of the classical S. Lie equivalence problem for the Monge-Ampère equations.},
author = {Kruglikov, Boris},
journal = {Banach Center Publications},
keywords = {hyperbolic Monge-Ampère equations; contact transformation group; new method of finding symmetries},
language = {eng},
number = {1},
pages = {179-194},
title = {Classification of Monge-Ampère equations with two variables},
url = {http://eudml.org/doc/209006},
volume = {50},
year = {1999},
}
TY - JOUR
AU - Kruglikov, Boris
TI - Classification of Monge-Ampère equations with two variables
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 179
EP - 194
AB - This paper deals with the classification of hyperbolic Monge-Ampère equations on a two-dimensional manifold. We solve the local equivalence problem with respect to the contact transformation group assuming that the equation is of general position nondegenerate type. As an application we formulate a new method of finding symmetries. This together with previous author's results allows to state the solution of the classical S. Lie equivalence problem for the Monge-Ampère equations.
LA - eng
KW - hyperbolic Monge-Ampère equations; contact transformation group; new method of finding symmetries
UR - http://eudml.org/doc/209006
ER -
References
top- [AG] V. I. Arnol'd, A. B. Givental', Symplectic geometry, in: Dynamical Systems IV, Encyclopaedia Math. Sci. 4, Springer, Berlin, 1990, 1-136.
- [Au] T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren Math. Wiss. 252, Springer, New York, 1982. Zbl0512.53044
- [FN] A. Frölicher, A. Nijenhuis, Theory of vector-valued differential forms I, Nederl. Akad. Wetensch. Proc. Ser. A 59 = Indag. Math. 18 (1956), 338-359. Zbl0079.37502
- [G] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables independantes, tome I, Hermann, Paris, 1896. Zbl27.0264.04
- [Ha] J. Haantjes, On -forming sets of eigenvectors, Nederl. Akad. Wetensch. Proc. Ser. A 58 = Indag. Math. 17 (1955), 158-162. Zbl0068.14903
- [KLV] I. Krasil'shchik, V. Lychagin, A. Vinogradov, Geometry of jet spaces and nonlinear partial differential equations, Adv. Stud. Contemp. Math. 1, Gordon and Breach, New York, 1986.
- [Kr1] B. S. Kruglikov, Some classificational problems in four dimensional geometry: distributions, almost complex structures and Monge-Ampère equations (in Russian), Mat. Sb. 189 no. 11 (1998), 61-74; e-print: http:/xxx.lanl.gov/abs/dg-ga/9611005.
- [Kr2] B. S. Kruglikov, Symplectic and contact Lie algebras with an application to Monge-Ampère equations (in Russian), Trudy Mat. Inst. Steklov 221 (1998), 232-246; e-print: http:/xxx.lanl.gov/abs/dg-ga/9709004. Zbl1032.53067
- [Ku] A. Kushner, Symplectic geometry of mixed type equations, in: The Interplay between Differential Geometry and Differential Equations, V. V. Lychagin (ed.), Amer. Math. Soc. Transl. ser. 2, 167, Amer. Math. Soc., Providence, 1995, 131-142. Zbl0843.58125
- [Lie] S. Lie, Gesammelte Abhandlungen, Band VI, Aschehoug, Oslo, and Teubner, Leipzig, 1922.
- [Ly1] V. V. Lychagin, Contact geometry and nonlinear second order differential equations, Uspekhi Mat. Nauk 34 no. 1 (1979), 137-165 (in Russian); English transl.: Russian Math. Surveys 34 (1979), 149-180.
- [Ly2] V. Lychagin, Lectures on Geometry of Differential Equations, Ciclo di conferenze tenute presso il Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università 'La Sapienza', Roma, 1992.
- [LRC] V. V. Lychagin, V. N. Rubtsov, I. V. Chekalov, A classification of Monge-Ampère equations, Ann. Sci. École Norm. Sup. (4) 26 (1993), 281-308. Zbl0789.58078
- [M] T. Morimoto, Le problème d'équivalence des équations de Monge-Ampère, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), A25-A28. Zbl0425.35023
- [NN] A. Newlander, L. Nirenberg, Complex analytic coordinates in almost-complex manifolds, Ann. Math. (2) 65 (1957), 391-404. Zbl0079.16102
- [R] A. Rakhimov, Singularities of Riemann invariants, Funktsional. Anal. i Prilozhen. 27 no. 1 (1993), 46-59 (in Russian); English transl.: Funct. Anal. Appl. 27 (1993), 39-50.
- [S] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, 1964. Zbl0129.13102
- [T] N. Tanaka, On differential systems, graded Lie algebras and pseudogroups, J. Math. Kyoto Univ. 10 (1970), 1-82. Zbl0206.50503
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.