Differential invariants of generic hyperbolic Monge-Ampère equations

Michal Marvan; Alexandre Vinogradov; Valery Yumaguzhin

Open Mathematics (2007)

  • Volume: 5, Issue: 1, page 105-133
  • ISSN: 2391-5455

Abstract

top
In this paper basic differential invariants of generic hyperbolic Monge-Ampère equations with respect to contact transformations are constructed and the equivalence problem for these equations is solved.

How to cite

top

Michal Marvan, Alexandre Vinogradov, and Valery Yumaguzhin. "Differential invariants of generic hyperbolic Monge-Ampère equations." Open Mathematics 5.1 (2007): 105-133. <http://eudml.org/doc/269073>.

@article{MichalMarvan2007,
abstract = {In this paper basic differential invariants of generic hyperbolic Monge-Ampère equations with respect to contact transformations are constructed and the equivalence problem for these equations is solved.},
author = {Michal Marvan, Alexandre Vinogradov, Valery Yumaguzhin},
journal = {Open Mathematics},
keywords = {Monge-Ampère equation; contact transformation; Frölicher-Nijenhuis bracket; scalar differential invariant},
language = {eng},
number = {1},
pages = {105-133},
title = {Differential invariants of generic hyperbolic Monge-Ampère equations},
url = {http://eudml.org/doc/269073},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Michal Marvan
AU - Alexandre Vinogradov
AU - Valery Yumaguzhin
TI - Differential invariants of generic hyperbolic Monge-Ampère equations
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 105
EP - 133
AB - In this paper basic differential invariants of generic hyperbolic Monge-Ampère equations with respect to contact transformations are constructed and the equivalence problem for these equations is solved.
LA - eng
KW - Monge-Ampère equation; contact transformation; Frölicher-Nijenhuis bracket; scalar differential invariant
UR - http://eudml.org/doc/269073
ER -

References

top
  1. [1] D.V. Alekseevsky, A.M. Vinogradov and V.V. Lychagin: “Basic ideas and concepts of differential geometry”, In: Geometry, I, Encyclopaedia Math. Sci., Vol. 28, Springer, Berlin, 1991, pp. 1–264. 
  2. [2] A. Frölicher and A. Nijenhuis: “Theory of vector valued differential forms. Part I: Derivations in the graded ring of differential forms,” Indag. Math., Vol. 18, (1956), pp. 338–359. Zbl0079.37502
  3. [3] P. Hartman and A. Wintner: “On hyperbolic partial differential equations”, Am. J. Math., Vol. 74, (1952), pp. 834–864. http://dx.doi.org/10.2307/2372229 Zbl0048.33302
  4. [4] I.S. Krasil’shchik, V.V. Lychagin and A.M. Vinogradov: Geometry of Jet Spaces and Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986. 
  5. [5] I.S. Krasil’shchik and A.M. Vinogradov (Ed.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Translations of Mathematical Monographs, Vol. 182, American Mathematical Society, Providence RI, 1999. 
  6. [6] B.S. Kruglikov: “Some classificational problems in four-dimensional geometry: distributions, almost complex structures and the generalized Monge-Ampère equations”, Math. Sbornik, Vol. 189(11), (1998), pp. 61–74 (in Russian); English translation in Sb. Math., Vol. 186(11–12), (1998), pp. 1643–1656; e-print: http://xxx.lanl.gov/abs/dg-ga/9611005. 
  7. [7] B.S. Kruglikov: “Symplectic and contact Lie algebras with application to the Monge-Ampère equations”, Trudy Mat. Inst. Steklova, Vol. 221, (1998), pp. 232–246 (in Russian); English translation in Proc. Steklov Math. Inst., Vol. 221(2), (1998), pp. 221–235; e-print: http://xxx.lanl.gov/abs/dg-ga/9709004 Zbl1032.53067
  8. [8] B.S. Kruglikov: “Classification of Monge-Ampère equations with two variables”, In: Geometry and Topology of Caustics - CAUSTICS’ 98 (Warsaw), Banach Center Publications, Vol. 50, Polish Acad. Sci., Warsaw, 1999, pp. 179–194. 
  9. [9] A. Kushner: “Monge-Ampère equations and e-structures”, Dokl. Akad. Nauk, Vol. 361(5), (1998), pp. 595–596. Zbl0958.58002
  10. [10] H. Lewy: “Über das Anfangswertproblem bei einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Verànderlichen”, Math. Annalen, Vol. 98, (1928), pp. 179–191. http://dx.doi.org/10.1007/BF01451588 Zbl53.0473.15
  11. [11] V.V. Lychagin: “Contact geometry and non-linear second order differential equations”, Russian Math. Surveys, Vol. 34, (1979), pp. 149–180. http://dx.doi.org/10.1070/RM1979v034n01ABEH002873 Zbl0427.58002
  12. [12] V.V. Lychagin: Lectures on Geometry of Differential Equations, Universita “La Sapienza”, Roma, 1992. 
  13. [13] V.V. Lychagin and V.N. Rubtsov: “Local classification of Monge-Ampere equations”, Soviet Math. Doklady, Vol. 272(1), (1983), pp. 34–38. Zbl0555.35016
  14. [14] V.V. Lychagin and V.N. Rubtsov: “On the Sophus Lie theorems for Monge-Ampere equations”, Belorussian Acad. Sci. Doklady, Vol. 27(5, (1983), pp. 396–398 Zbl0526.58002
  15. [15] V.V. Lychagin, V.N. Rubtsov and I.V. Chekalov: “A classification of Monge-Ampere equations”, Ann. Sc. Ecole Norm. Sup., Vol. 4(26), (1993), pp. 281–308. Zbl0789.58078
  16. [16] M. Marvan, A.M. Vinogradov and V.A. Yumaguzhin: “Differential invariants of generic hyperbolic Monge-Ampère equations”, Russian Acad. Sci. Dokl. Math., Vol. 405, (2005), pp. 299–301 (in Russian); English translation in: Doklady Mathematics, Vol. 72, (2005), pp. 883–885. Zbl1133.35407
  17. [17] M. Matsuda: “Two methods of integrating Monge-Ampère’s equations”, Trans. Amer. Math. Soc., Vol. 150, (1970), pp. 327–343. http://dx.doi.org/10.2307/1995496 Zbl0201.42101
  18. [18] M. Matsuda: “Two methods of integrating Monge-Ampère’s equations. II”, Trans. Amer. Math. Soc., Vol. 166, (1972), pp. 371–386. http://dx.doi.org/10.2307/1996056 Zbl0235.35002
  19. [19] T. Morimoto: “La géométrie des équations de Monge-Ampère”, C. R. Acad. Sci., Paris, Vol. 289, (1979), pp. A-25–A-28. Zbl0425.35023
  20. [20] T. Morimoto: “Monge-Ampère equations viewed from contact geometry”, In: Symplectic Singularities and Geometry of Gauge Fields (Warsaw, 1995), Banach Center Publ., Vol. 39, Polish Acad. Sci., Warsaw, 1997, pp. 105–121. 
  21. [21] O.P. Tchij: “Contact geometry of hyperbolic Monge-Ampère eqquations”, Lobachevskii Journal of Mathematics, Vol. 4, (1999), pp. 109–162. Zbl0938.35011
  22. [22] D.V. Tunitsky: “On the global solvability of hyperbolic Monge-Ampère equations”, Izv. Ross. Akad. Nauk Ser. Mat., Vol. 61(5), (1997), pp. 177–224 (in Russian); English translation in: Izv. Math, Vol. 61(5), (1997), pp. 1069–1111. 
  23. [23] D.V. Tunitsky: “Monge-Ampère equations and functors of characteristic connection”, Izv. RAN, Ser. Math., Vol. 65(6), (2001), pp. 173–222. 
  24. [24] A.M. Vinogradov: “Scalar differential invariants, diffieties and characteristic classes”, In: Mechanics, Analysis and Geometry: 200 Years after Lagrange, M. Francaviglia, North-Holland, 1991, pp. 379–414. Zbl0735.57012
  25. [25] A.M. Vinogradov and V.A. Yumaguzhin: “Differential invariants of webs on 2-dimensional manifolds”, Mat. Zametki, Vol. 48(1), (1990), pp. 46–68 (in Russian). Zbl0714.53019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.