Recognizing right-left equivalence locally

Takashi Nishimura

Banach Center Publications (1999)

  • Volume: 50, Issue: 1, page 205-215
  • ISSN: 0137-6934

How to cite

top

Nishimura, Takashi. "Recognizing right-left equivalence locally." Banach Center Publications 50.1 (1999): 205-215. <http://eudml.org/doc/209009>.

@article{Nishimura1999,
author = {Nishimura, Takashi},
journal = {Banach Center Publications},
keywords = {right-left equivalence; contact equivalence; topological equivalence},
language = {eng},
number = {1},
pages = {205-215},
title = {Recognizing right-left equivalence locally},
url = {http://eudml.org/doc/209009},
volume = {50},
year = {1999},
}

TY - JOUR
AU - Nishimura, Takashi
TI - Recognizing right-left equivalence locally
JO - Banach Center Publications
PY - 1999
VL - 50
IS - 1
SP - 205
EP - 215
LA - eng
KW - right-left equivalence; contact equivalence; topological equivalence
UR - http://eudml.org/doc/209009
ER -

References

top
  1. [1] V. I. Arnol'd, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of Differentiable Maps I, Monogr. Math. 82, Birkhäuser, Boston, 1985. 
  2. [2] K. Bekka, C-régularité et trivialité topologique, in: Singularity Theory and its Applications (Warwick, 1989), Part I, D. Mond and J. Montaldi (eds.), Lecture Notes in Math. 1462, Springer, Berlin, 1991, 42-62. 
  3. [3] M. Fukuda and T. Fukuda, Algebras Q(f) determine the topological types of generic map germs, Invent. Math. 51 (1979), 231-237. Zbl0408.58012
  4. [4] T. Gaffney, A note on the order of determination of a finitely determined germ, Invent. Math. 52 (1979), 127-130. Zbl0419.58004
  5. [5] T. Gaffney, The structure of TA(f), classification and an application to differential geometry, Proc. Sympos. Pure Math. 40 (1983), 409-427. Zbl0523.58008
  6. [6] T. Gaffney and A. A. du Plessis, More on the determinacy of smooth map-germs, Invent. Math. 66 (1982), 137-163. Zbl0489.58004
  7. [7] C. G. Gibson, K. Wirthmüller, A. A. du Plessis, E. J. N. Looijenga, Topological Stability of Smooth Mappings, Lecture Notes in Math. 552, Springer, Berlin, 1976. Zbl0377.58006
  8. [8] J. Martinet, Déploiements versals des applications différentiables et classification des applications stables, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 1-44. 
  9. [9] J. Mather, Stability of C mappings, III. Finitely determined map-germs, Inst. Hautes Études Sci. Publ. Math. 35 (1968), 127-156. Zbl0159.25001
  10. [10] J. Mather, Stability of C mappings, IV. Classification of stable map-germs by R-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223-248. 
  11. [11] J. Mather, How to stratify mappings and jet spaces, in: Singularités d'applications différentiables (Plans-sur-Bex, 1975), O. Burlet, F. Ronga (eds.), Lecture Notes in Math. 535, Springer, Berlin, 1976, 128-176. 
  12. [12] D. Mond, On the classification of germs of maps from R 2 to R 3 , Proc. London Math. Soc. (3) 50 (1985), 333-369. Zbl0557.58006
  13. [13] T. Nishimura, A constructive method to get right-left equivalence for smooth map germs and its application to divergent diagrams, in: Workshop on Real and Complex Singularities (São Carlos, 1992), M. A. S. Ruas (ed.), Mat. Contemp. 5, Sociedade Brasileira de Matemática, Rio de Janeiro, 1993, 137-160. Zbl0859.57033
  14. [14] T. Nishimura, Isomorphism of smooth map germs with isomorphic local algebras, in: Real Analytic and Algebraic Singularities (Nagoya, 1996), T. Fukuda, T. Fukui, S. Izumiya and S. Koike (eds.), Pitman Res. Notes Math. Ser. 381, Longman, Harlow, 1998, 94-106. Zbl0906.58005
  15. [15] T. Nishimura, Criteria for right-left equivalence of smooth map-germs, preprint, Yokohama National University, 1998. 
  16. [16] T. Nishimura, Topological equivalence of K-equivalent map germs, J. London Math. Soc. (2), to appear. Zbl0940.58006
  17. [17] T. Nishimura, C r K-versality of the graph deformation of a C r stable map-germ, Math. Proc. Cambridge Philos. Soc., to appear. 
  18. [18] T. Nishimura, Topological equivalence of K-equivalent map germs, II, in preparation. Zbl0940.58006
  19. [19] A. A. du Plessis, On the determinacy of smooth map-germs, Invent. Math. 58 (1980), 107-160. Zbl0446.58004
  20. [20] A. A. du Plessis and C. T. C. Wall, The Geometry of Topological Stability, London Math. Soc. Monogr. (N.S.) 9, Oxford University Press, New York, 1995. Zbl0870.57001
  21. [21] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481-539. Zbl0451.58009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.