Page 1 Next

Displaying 1 – 20 of 405

Showing per page

A bound for the Milnor number of plane curve singularities

Arkadiusz Płoski (2014)

Open Mathematics

Let f = 0 be a plane algebraic curve of degree d > 1 with an isolated singular point at 0 ∈ ℂ2. We show that the Milnor number μ0(f) is less than or equal to (d−1)2 − [d/2], unless f = 0 is a set of d concurrent lines passing through 0, and characterize the curves f = 0 for which μ0(f) = (d−1)2 − [d/2].

A class of non-rational surface singularities with bijective Nash map

Camille Plénat, Patrick Popescu-Pampu (2006)

Bulletin de la Société Mathématique de France

Let ( 𝒮 , 0 ) be a germ of complex analytic normal surface. On its minimal resolution, we consider the reduced exceptional divisor E and its irreducible components E i , i I . The Nash map associates to each irreducible component C k of the space of arcs through 0 on 𝒮 the unique component of E cut by the strict transform of the generic arc in C k . Nash proved its injectivity and asked if it was bijective. As a particular case of our main theorem, we prove that this is the case if E · E i < 0 for any  i I .

A note on Bézout's theorem

Sławomir Rams, Piotr Tworzewski, Tadeusz Winiarski (2005)

Annales Polonici Mathematici

We present a version of Bézout's theorem basing on the intersection theory in complex analytic geometry. Some applications for products of surfaces and curves are also given.

A propos du problème des arcs de Nash

Camille Plénat (2005)

Annales de l’institut Fourier

Soit = N i la décomposition canonique de l’espace des arcs passant par une singularité normale de surface. Dans cet article, on propose deux nouvelles conditions qui si elles sont vérifiées permettent de montrer que N i n’est pas inclus dans N j . On applique ces conditions pour donner deux nouvelles preuves du problème de Nash pour les singularités sandwich minimales.

An Algebraic Formula for the Index of a Vector Field on an Isolated Complete Intersection Singularity

H.-Ch. Graf von Bothmer, Wolfgang Ebeling, Xavier Gómez-Mont (2008)

Annales de l’institut Fourier

Let ( V , 0 ) be a germ of a complete intersection variety in n + k , n > 0 , having an isolated singularity at 0 and X be the germ of a holomorphic vector field having an isolated zero at 0 and tangent to V . We show that in this case the homological index and the GSV-index coincide. In the case when the zero of X is also isolated in the ambient space n + k we give a formula for the homological index in terms of local linear algebra.

Currently displaying 1 – 20 of 405

Page 1 Next