On Liouville forms

Paulette Libermann

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 151-164
  • ISSN: 0137-6934

Abstract

top
We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.

How to cite

top

Libermann, Paulette. "On Liouville forms." Banach Center Publications 51.1 (2000): 151-164. <http://eudml.org/doc/209026>.

@article{Libermann2000,
abstract = {We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.},
author = {Libermann, Paulette},
journal = {Banach Center Publications},
keywords = {generalized Liouville forms; vertical Liouville forms; locally trivial fibration; infinitesimal automorphisms; momentum maps},
language = {eng},
number = {1},
pages = {151-164},
title = {On Liouville forms},
url = {http://eudml.org/doc/209026},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Libermann, Paulette
TI - On Liouville forms
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 151
EP - 164
AB - We give different notions of Liouville forms, generalized Liouville forms and vertical Liouville forms with respect to a locally trivial fibration π:E → M. These notions are linked with those of semi-basic forms and vertical forms. We study the infinitesimal automorphisms of these forms; we also investigate the relations with momentum maps.
LA - eng
KW - generalized Liouville forms; vertical Liouville forms; locally trivial fibration; infinitesimal automorphisms; momentum maps
UR - http://eudml.org/doc/209026
ER -

References

top
  1. [A.G.M] D. Alekseevsky, J. Grabowski, G. Marmo and P.W Michor, Poisson structures on the cotangent bundle of a Lie group or a principal bundle and their reductions, J. Math. Phys. 35 (1994) 4909-4927. Zbl0822.58016
  2. [A] V. Arnold, Mathematical methods of classical mechanics, Mir, Moscow 1975, Springer graduate texts in Math. No. 60. Springer-Verlag, New York. 
  3. [D.L.M] P. Dazord, A. Lichnerowicz and C.-M. Marle, Structure locale des variétés de Jacobi, J. Math. Pures et Appl. 70 (1991), 101-152. Zbl0659.53033
  4. [D.S] P. Dazord and D. Sondaz, Variétés de Poisson - algébroïdes de Lie, Université Claude Bernard Lyon 1. Publications du département de mathématiques, nouvelle série 1/B (1988), 1-68. 
  5. [G] C. Godbillon, Géométrie différentielle et mécanique classique, Hermann, Paris, 1969. Zbl0174.24602
  6. [K] M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana University Math. J. 30 (1981), 281-291. Zbl0425.70019
  7. [L1] P. Libermann, Problèmes d'équivalence et Géométrie symplectique, Proc IIIe rencontre de Géom. Schnepfenried, Astérisque 107-108 (1983), 43-68. Zbl0529.53030
  8. [L2] P. Libermann, Cartan-Darboux theorems for Pfaffian forms on foliated manifolds, Proc. VIth Int. Colloq. Diff. Geom. Santiago (1989), 125-144. 
  9. [L.M] P. Libermann and C.-M. Marle, Symplectic Geometry and Analytical Mechanics, Reidel, Dordrecht,1987. Zbl0643.53002
  10. [R] G. Reeb, Sur les espaces de Finsler et les espaces de Cartan, Colloque C.N.R.S. Géom. différentielle Strasbourg 1953, 35-40, Editions du CNRS Paris, 1953. Zbl0087.36801
  11. [W] A. Weinstein, A universal phase space for particles in Yang-Mills field, Letters in Math. Phys. 2 (1978), 417-420. Zbl0388.58010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.