The Theory of differential invariance and infinite dimensional Hamiltonian evolutions
Banach Center Publications (2000)
- Volume: 51, Issue: 1, page 187-196
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Adler, On a Trace Functional for Formal Pseudo-differential Operators and the Symplectic Structure of the KdV, Inventiones Math. 50 (1979), 219-248. Zbl0393.35058
- [2] V. G. Drinfel'd and V. V. Sokolov, Lie Algebras and Equations of KdV Type, J. of Sov. Math. 30 (1985), 1975-2036. Zbl0578.58040
- [3] M. Fels and P. J. Olver Moving coframes. I. A practical algorithm, Acta Appl. Math. 51 (1998), 161-213. Zbl0937.53012
- [4] M. Fels and P. J. Olver Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127-208. Zbl0937.53013
- [5] I. M. Gel'fand and L. A. Dikii, A family of Hamiltonian structures connected with integrable nonlinear differential equations, in: I. M. Gelfand, Collected papers v.1, Springer-Verlag, 1987.
- [6] A. González-López, R. Hernandez and G. Marí Beffa, Invariant differential equations and the Adler-Gel'fand-Dikii bracket, J. Math. Phys. 38 (1997), 5720-5738. Zbl0892.58037
- [7] B. A. Kupershmidt and G. Wilson, Modifying Lax equations and the second Hamiltonian structure, Inventiones Math. 62 (1981), 403-436. Zbl0464.35024
- [8] G. Marí Beffa, Differential invariants and KdV Hamiltonian evolutions, Bull. Soc. Math. France 127 (1999) 363-391.
- [9] G. Marí Beffa and P. Olver, Differential Invariants for parametrized projective surfaces, Comm. Anal. Geom. 7 (1999), 807-839. Zbl0949.53012
- [10] P. Olver, Equivalence, Invariants and Symmetries, Cambridge University Press, Cambridge (1995).
- [11] I. McIntosh, SL(n+1)-invariant equations which reduce to equations of Korteweg-de Vries type, Proc. of the Royal Soc. of Edinburgh 115A (1990), 367-381. Zbl0724.35095
- [12] E. J. Wilczynski, Projective differential geometry of curves and ruled surfaces, B.G. Teubner, Leipzig (1906). Zbl37.0620.02
- [13] G. Wilson, On the antiplectic pair connected with the Adler-Gel'fand-Dikii bracket, Nonlinearity 5 (1992), 109-31. Zbl0761.58023