Self-Similarity of Poisson structures on tori

Kentaro Mikami; Alan Weinstein

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 211-217
  • ISSN: 0137-6934

Abstract

top
We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.

How to cite

top

Mikami, Kentaro, and Weinstein, Alan. "Self-Similarity of Poisson structures on tori." Banach Center Publications 51.1 (2000): 211-217. <http://eudml.org/doc/209033>.

@article{Mikami2000,
abstract = {We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.},
author = {Mikami, Kentaro, Weinstein, Alan},
journal = {Banach Center Publications},
keywords = {Poisson structures; tori; self-similarities; scaling group},
language = {eng},
number = {1},
pages = {211-217},
title = {Self-Similarity of Poisson structures on tori},
url = {http://eudml.org/doc/209033},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Mikami, Kentaro
AU - Weinstein, Alan
TI - Self-Similarity of Poisson structures on tori
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 211
EP - 217
AB - We study the group of diffeomorphisms of a 3-dimensional Poisson torus which preserve the Poisson structure up to a constant multiplier, and the group of similarity ratios.
LA - eng
KW - Poisson structures; tori; self-similarities; scaling group
UR - http://eudml.org/doc/209033
ER -

References

top
  1. [1] P. Iglésias, Arithmétique des rapports de similitudes symplectiques, Compositio Math. 95 (1995), 235-245. 
  2. [2] P. Iglésias and G. Lachaud, Espaces différentiables singuliers et corps de nombres algébriques, Ann. Inst. Fourier (Grenoble) 40 (1990), 723-737. Zbl0703.57017
  3. [3] D. A. Marcus, Number Fields, Springer-Verlag, New York, 1977. 
  4. [4] G. Prasad and M. S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Annals of Math. 96 (1972), 296-317. Zbl0245.22013
  5. [5] D. Shlyakhtenko, Von Neumann algebras and Poisson manifolds, survey article for Math 277, Spring 1997, Univ. of California, Berkeley, available at http://www.math.berkeley. edu/~alanw. 
  6. [6] A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394. Zbl0902.58013
  7. [7] A. Weinstein, Poisson geometry, Diff. Geom. Appl. 9 (1998), 213-238. 
  8. [8] A. Weinstein and P. Xu, Hochschild cohomology and characteristic classes for star-products, in: Topics in singularity theory: V.I. Arnold's 60th anniversary collection, A. Khovanskii, A. Varchenko, V. Vassiliev, eds., Amer. Math. Soc., Providence, 1997, 177-194. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.