Quantization of the cotangent bundle via the tangent groupoid

José Cariñena; Jesús Clemente-Gallardo

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 43-53
  • ISSN: 0137-6934

How to cite


Cariñena, José, and Clemente-Gallardo, Jesús. "Quantization of the cotangent bundle via the tangent groupoid." Banach Center Publications 51.1 (2000): 43-53. <http://eudml.org/doc/209042>.

author = {Cariñena, José, Clemente-Gallardo, Jesús},
journal = {Banach Center Publications},
keywords = {strict deformation quantization; groupoids},
language = {eng},
number = {1},
pages = {43-53},
title = {Quantization of the cotangent bundle via the tangent groupoid},
url = {http://eudml.org/doc/209042},
volume = {51},
year = {2000},

AU - Cariñena, José
AU - Clemente-Gallardo, Jesús
TI - Quantization of the cotangent bundle via the tangent groupoid
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 43
EP - 53
LA - eng
KW - strict deformation quantization; groupoids
UR - http://eudml.org/doc/209042
ER -


  1. [1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation theory and quantization, I and II. Annals of Physics 111 (1978), 61-110 and 111 (1978), 111-151. Zbl0377.53024
  2. [2] J. F. Cariñena, J. Clemente-Gallardo, E. Follana, J. M. Gracia-Bondía, A. Rivero and J. C. Varilly, Connes' tangent groupoid and strict quantization, J. Geom. Phys. 32 (1999), 79-96. Zbl0961.53047
  3. [3] J. Clemente-Gallardo, Ph. D Thesis, University of Zaragoza, 1999. 
  4. [4] A. Connes, Noncommutative Geometry, Academic Press, London, 1994. 
  5. [5] A. Connes and Hilson, Déformations, morphismes asymptotiques et K-théorie bivariante, C. R. Acad. Sci. Paris 311, Sér. I, 101-106. 
  6. [6] M. De Wilde and P. B. Lecomte. Existence of star products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7 (1983), 487-496. Zbl0526.58023
  7. [7] B. Fedosov, Deformation quantization and index theory, Akademie Verlag, 1996. 
  8. [8] M. J. Gotay, Obstructions to quantization, preprint math-ph/9809011; The Juan Simo Memorial Volume, J. Marsden and S. Wiggins (eds.), Springer, 1998. 
  9. [9] M. Hilsum and G. Skandalis, Morphismes K-orientés d'espaces de feuilles et fonctorialité en théorie de Kasparov, Ann. Sci. Ec. Norm. Sup. 20 (1987), 325-390. Zbl0656.57015
  10. [10] N. P. Landsman, Strict deformation quantization of a particle in external gravitational and Yang-Mills fields, J. Geom. Phys. 12 (1993), 93-132. Zbl0789.58081
  11. [11] S. Lang, Differential Manifolds, Addison-Wesley, Reading, Mass., 1972. 
  12. [12] B. Monthubert and F. Pierrot, Indice analytique et groupoïdes de Lie, C. R. Acad. Sci. Paris 325 (1997), 193-198. Zbl0955.22004
  13. [13] M. Rieffel, Questions on quantization, preprint quant-ph/9712009; Proc. Internat. Conf. on Operator Algebras and Operator Theory (Shanghai, 1997). 

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.