Isomorphisms of Poisson and Jacobi brackets

Janusz Grabowski

Banach Center Publications (2000)

  • Volume: 51, Issue: 1, page 79-85
  • ISSN: 0137-6934

Abstract

top
We present a general theorem describing the isomorphisms of the local Lie algebra structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp. real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We admit degenerate structures as well, which seems to be new in the literature.

How to cite

top

Grabowski, Janusz. "Isomorphisms of Poisson and Jacobi brackets." Banach Center Publications 51.1 (2000): 79-85. <http://eudml.org/doc/209046>.

@article{Grabowski2000,
abstract = {We present a general theorem describing the isomorphisms of the local Lie algebra structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp. real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We admit degenerate structures as well, which seems to be new in the literature.},
author = {Grabowski, Janusz},
journal = {Banach Center Publications},
keywords = {isomorphisms; local Lie algebra; Poisson; contact},
language = {eng},
number = {1},
pages = {79-85},
title = {Isomorphisms of Poisson and Jacobi brackets},
url = {http://eudml.org/doc/209046},
volume = {51},
year = {2000},
}

TY - JOUR
AU - Grabowski, Janusz
TI - Isomorphisms of Poisson and Jacobi brackets
JO - Banach Center Publications
PY - 2000
VL - 51
IS - 1
SP - 79
EP - 85
AB - We present a general theorem describing the isomorphisms of the local Lie algebra structures on the spaces of smooth (real-analytic or holomorphic) functions on smooth (resp. real-analytic, Stein) manifolds, as, for example, those given by Poisson or contact structures. We admit degenerate structures as well, which seems to be new in the literature.
LA - eng
KW - isomorphisms; local Lie algebra; Poisson; contact
UR - http://eudml.org/doc/209046
ER -

References

top
  1. [1] C. J. Atkin and J. Grabowski, Homomorphisms of the Lie algebras associated with a symplectic manifold, Compos. Math. 76 (1990), 315-349. Zbl0718.53025
  2. [2] P. Dazord, A. Lichnerowicz and Ch.-M. Marle, Structure locale des variétés de Jacobi, J. Math. pures et appl. 70 (1991), 101-152. Zbl0659.53033
  3. [3] J. Grabowski, Isomorphism and ideals of the Lie algebras of vector fields, Inv. Math. 50 (1978), 13-33. Zbl0378.57010
  4. [4] J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys. 9 (1992), 45-73. Zbl0761.16012
  5. [5] F. Guedira and A. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirillov, J. Math. pures et appl. 63 (1984), 407-484. Zbl0562.53029
  6. [6] A. A. Kirillov, Local Lie algebras, Russ. Math. Surv. 31 (1976), 55-75. Zbl0357.58003
  7. [7] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geom. 12 (1977), 253-300. Zbl0405.53024
  8. [8] A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associées, J. Math. pures et appl. 57 (1978), 453-488. Zbl0407.53025
  9. [9] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427, Springer, Berlin, 1974. Zbl0328.58005
  10. [10] S. M. Skriabin, Lie algebras of derivations of commutative rings: Generalizations of the Lie algebras of Cartan type, Preprint WINITI 4405-W87, Moscow University, 1987 (in Russian). 
  11. [11] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. Zbl0524.58011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.