Lie algebraic characterization of manifolds
Janusz Grabowski; Norbert Poncin
Open Mathematics (2004)
- Volume: 2, Issue: 5, page 811-825
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topJanusz Grabowski, and Norbert Poncin. "Lie algebraic characterization of manifolds." Open Mathematics 2.5 (2004): 811-825. <http://eudml.org/doc/268851>.
@article{JanuszGrabowski2004,
abstract = {Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.},
author = {Janusz Grabowski, Norbert Poncin},
journal = {Open Mathematics},
keywords = {17B63; 13N10; 16S32; 17B40; 17B65; 53D17},
language = {eng},
number = {5},
pages = {811-825},
title = {Lie algebraic characterization of manifolds},
url = {http://eudml.org/doc/268851},
volume = {2},
year = {2004},
}
TY - JOUR
AU - Janusz Grabowski
AU - Norbert Poncin
TI - Lie algebraic characterization of manifolds
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 811
EP - 825
AB - Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.
LA - eng
KW - 17B63; 13N10; 16S32; 17B40; 17B65; 53D17
UR - http://eudml.org/doc/268851
ER -
References
top- [1] K. Abe: “Pursell-Shanks type theorem for orbit spaces and G-manifolds”, Publ. Res. Inst. Math. Sci., Vol. 18, (1982), pp. 265–282. Zbl0519.57033
- [2] I. Amemiya: “Lie algebra of vector fields and complex structure”, J. Math. Soc. Japan, Vol. 27, (1975), pp. 545–549. http://dx.doi.org/10.2969/jmsj/02740545 Zbl0311.57012
- [3] C.J. Atkin and J. Grabowski: “Homomorphisms of the Lie algebras associated with a symplectic manifolds”, Compos. Math., Vol. 76, (1990), pp. 315–348. Zbl0718.53025
- [4] F. Boniver, S. Hansoul, P. Mathonet and N. Poncin: “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., Vol. 62, (2002), pp. 219–232. http://dx.doi.org/10.1023/A:1022251607566 Zbl1035.17034
- [5] A. Campillo, J. Grabowski and G. Müller G: “Derivation algebras of toric varieties”, Comp. Math., Vol. 116, (1999), pp. 119–132. http://dx.doi.org/10.1023/A:1000612012255 Zbl1053.14518
- [6] P. Cohen, Yu Manin and D. Zagier: “Automorphic pseudodifferential operators, Algebraic Aspects of Integrable Systems”, Progr. Nonlinear Differential Equations Appl., Vol. 26, (1997), pp. 17–47. Zbl1055.11514
- [7] M. De Wilde and P. Lecomte: “Some Characterizations of Differential Operators on Vector Bundles”, E.B. Christoffel, P. Butzer and F. Feher (Eds.), Brikhäuser Verlag, Basel, 1981, pp. 543–549.
- [8] M. De Wilde and P. Lecomte: “Cohomology of the Lie Algebra of Smooth Vector Fields of a Manifold, associated to the Lie Derivative of Smooth Forms”, J. Math. pures et appl., Vol. 62, (1983), pp. 197–214. Zbl0481.58032
- [9] C. Duval and V. Ovsienko: “Space of second order linear differential operators as a module over the Lie algebra of vector fields”, Adv. in Math., Vol. 132(2), (1997), pp. 316–333. http://dx.doi.org/10.1006/aima.1997.1683
- [10] M. Flato and A. Lichnerowicz: “Cohomologie des représentations definies par la derivation de Lie et à valeurs dans les formes, de l'algèbre de Lie des champs de vecteurs d'une variété différentiable. Premiers espaces de cohomologie. Applications”, C. R. Acad. Sci., Sér. A, Vol. 291, (1980), pp. 331–335. Zbl0462.58011
- [11] H. Gargoubi and V. Ovsienko: “Space of linear differential operators on the real line as a module over the Lie algebra of vector fields”, Internat. Math. Res. Notices, Vol. 5, (1996), pp. 235–251. http://dx.doi.org/10.1155/S1073792896000177 Zbl0851.17023
- [12] K. Grabowska and J. Grabowski: “The Lie algebra of a Lie algebroid”, In: J. Kubarski et al. (Eds.): Lie Algebroids and Related Topics in Differential Geometry, Vol. 54, Banach Center Publications, Warszawa, 2001, pp. 43–50. Zbl1003.17011
- [13] I. Gel'fand and A. Kolmogoroff: “On rings of continuous functions on topological spaces”, C. R. (Dokl.) Acad. Sci. URSS, Vol. 22, (1939), pp. 11–15. Zbl65.0500.03
- [14] J. Grabowski: “Isomorphisms and ideals of the Lie algebras of vector fields”, Invent. math., Vol. 50, (1978), pp. 13–33. http://dx.doi.org/10.1007/BF01406466 Zbl0378.57010
- [15] J. Grabowski: “Lie algebras of vector fields and generalized foliations”, Publ. Matem., Vol. 37, (1993), pp. 359–367. Zbl0841.53027
- [16] J. Grabowski: “Isomorphisms of Poisson and Jacobi brackets”, In: J. Grabowski and P. Urbański (Eds.): Poisson Geometry, Vol. 51, Banach Center Publications, Warszawa, 2000, pp. 79–85. Zbl1017.53071
- [17] J. Grabowski: “Isomorphisms of algebras of smooth functions revisited”, Archiv Math., to appear, electronic version at http://arXiv.org/abs/math.DG/0310295.
- [18] J. Grabowski and N. Poncin: “Automorphisms of quantum and classical Poisson algebras”, Comp. Math. London Math. Soc., Vol. 140, (2004), pp. 511–527 http://arXiv.org/abs/math.RA/0211175 v1 Zbl1044.17013
- [19] H. Grauert: “On Levi's problem and the embedding of real analytic manifolds”, Ann. Math., Vol. 68, (1958), pp. 460–472. http://dx.doi.org/10.2307/1970257 Zbl0108.07804
- [20] H. Hauser and G. Müller: “Affine varieties and Lie algebras of vector fields”, Manusc. Math., Vol. 80, (1993), pp. 309–337. http://dx.doi.org/10.1007/BF03026556 Zbl0805.14004
- [21] A. Koriyama: “On Lie algebras of vector fields with invariant submanifolds”, Nagoya Math. J., Vol. 55, (1974), pp. 91–110. Zbl0273.22016
- [22] A. Koriyama, Y. Maeda and H. Omori: “On Lie algebras of vector fields”, Trans. Amer. Math. Soc., Vol. 226, (1977), pp. 89–117. http://dx.doi.org/10.2307/1997943 Zbl0318.57023
- [23] A. Kriegl and P.W. Michor: “The Convenient Setting of Global Analysis”, Math. Surv. Monog., Vol. 53, American Mathematical Society, (1997). Zbl0889.58001
- [24] P. Lecomte: “On some sequence of graded Lie algebras associated to manifolds”, Ann. Glob. Anal. Geom., Vol. 12, (1994), pp. 183–192. http://dx.doi.org/10.1007/BF02108296 Zbl0824.58024
- [25] P. Lecomte, P. Mathonet and E. Tousset: “Comparison of some modules of the Lie algebra of vector fields”, Indag. Math., Vol. 7(4), (1996), pp 461–471. http://dx.doi.org/10.1016/S0019-3577(97)89133-1 Zbl0892.58002
- [26] P. Lecomte and V. Ovsienko: “Projectively equivariant symbol calculus”, Lett. Math. Phys., Vol. 49, (1999), pp. 173–196. http://dx.doi.org/10.1023/A:1007662702470 Zbl0989.17015
- [27] J. Mrčun: On isomorphisms of algebras of smooth functions, electronic version at http://arXiv.org/abs/math.DG/0309179.
- [28] H. Omori: “Infinite dimensional Lie transformation groups”, Lect. Notes in Math., Vol. 427, (1976). Zbl0328.58005
- [29] N. Poncin: “Cohomologie de l'algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions”, C.R.A.S. Paris, Vol. 328, Serie I, (1999), pp. 789–794.
- [30] N. Poncin: “Equivariant Operators between some Modules of the Lie Algebra of Vector Fields”, Comm. in Alg., Vol. 32(7), (2004), pp. 2559–2572. http://dx.doi.org/10.1081/AGB-120037399 Zbl1082.17011
- [31] N. Poncin: Equivariant Operators between some Modules of the Lie Algebra of Vector Fields, preprint, Centre Universitaire de Luxembourg, (http://arXiv.org/abs/math.RT/0205297).
- [32] M.E. Shanks and L.E. Pursell: “The Lie algebra of a smooth manifolds”, Proc. Amer. Math. Soc., Vol. 5, (1954), pp. 468–472. http://dx.doi.org/10.2307/2031961 Zbl0055.42105
- [33] T. Siebert: “Lie algebras of derivations and affine differential geometr over fields of characteristic 0”, Mat. Ann., Vol. 305, (1996), pp. 271–286. http://dx.doi.org/10.1007/BF01444221 Zbl0858.17018
- [34] S.M. Skryabin: The regular Lie rings of derivations of commutative rings, preprint WINITI 4403-W87 (1987).
- [35] H. Whitney: “Differentiable manifolds”, Ann. Math., Vol. 37, (1936), pp. 645–680. http://dx.doi.org/10.2307/1968482 Zbl62.1454.01
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.