Lie algebraic characterization of manifolds

Janusz Grabowski; Norbert Poncin

Open Mathematics (2004)

  • Volume: 2, Issue: 5, page 811-825
  • ISSN: 2391-5455

Abstract

top
Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.

How to cite

top

Janusz Grabowski, and Norbert Poncin. "Lie algebraic characterization of manifolds." Open Mathematics 2.5 (2004): 811-825. <http://eudml.org/doc/268851>.

@article{JanuszGrabowski2004,
abstract = {Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.},
author = {Janusz Grabowski, Norbert Poncin},
journal = {Open Mathematics},
keywords = {17B63; 13N10; 16S32; 17B40; 17B65; 53D17},
language = {eng},
number = {5},
pages = {811-825},
title = {Lie algebraic characterization of manifolds},
url = {http://eudml.org/doc/268851},
volume = {2},
year = {2004},
}

TY - JOUR
AU - Janusz Grabowski
AU - Norbert Poncin
TI - Lie algebraic characterization of manifolds
JO - Open Mathematics
PY - 2004
VL - 2
IS - 5
SP - 811
EP - 825
AB - Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.
LA - eng
KW - 17B63; 13N10; 16S32; 17B40; 17B65; 53D17
UR - http://eudml.org/doc/268851
ER -

References

top
  1. [1] K. Abe: “Pursell-Shanks type theorem for orbit spaces and G-manifolds”, Publ. Res. Inst. Math. Sci., Vol. 18, (1982), pp. 265–282. Zbl0519.57033
  2. [2] I. Amemiya: “Lie algebra of vector fields and complex structure”, J. Math. Soc. Japan, Vol. 27, (1975), pp. 545–549. http://dx.doi.org/10.2969/jmsj/02740545 Zbl0311.57012
  3. [3] C.J. Atkin and J. Grabowski: “Homomorphisms of the Lie algebras associated with a symplectic manifolds”, Compos. Math., Vol. 76, (1990), pp. 315–348. Zbl0718.53025
  4. [4] F. Boniver, S. Hansoul, P. Mathonet and N. Poncin: “Equivariant symbol calculus for differential operators acting on forms”, Lett. Math. Phys., Vol. 62, (2002), pp. 219–232. http://dx.doi.org/10.1023/A:1022251607566 Zbl1035.17034
  5. [5] A. Campillo, J. Grabowski and G. Müller G: “Derivation algebras of toric varieties”, Comp. Math., Vol. 116, (1999), pp. 119–132. http://dx.doi.org/10.1023/A:1000612012255 Zbl1053.14518
  6. [6] P. Cohen, Yu Manin and D. Zagier: “Automorphic pseudodifferential operators, Algebraic Aspects of Integrable Systems”, Progr. Nonlinear Differential Equations Appl., Vol. 26, (1997), pp. 17–47. Zbl1055.11514
  7. [7] M. De Wilde and P. Lecomte: “Some Characterizations of Differential Operators on Vector Bundles”, E.B. Christoffel, P. Butzer and F. Feher (Eds.), Brikhäuser Verlag, Basel, 1981, pp. 543–549. 
  8. [8] M. De Wilde and P. Lecomte: “Cohomology of the Lie Algebra of Smooth Vector Fields of a Manifold, associated to the Lie Derivative of Smooth Forms”, J. Math. pures et appl., Vol. 62, (1983), pp. 197–214. Zbl0481.58032
  9. [9] C. Duval and V. Ovsienko: “Space of second order linear differential operators as a module over the Lie algebra of vector fields”, Adv. in Math., Vol. 132(2), (1997), pp. 316–333. http://dx.doi.org/10.1006/aima.1997.1683 
  10. [10] M. Flato and A. Lichnerowicz: “Cohomologie des représentations definies par la derivation de Lie et à valeurs dans les formes, de l'algèbre de Lie des champs de vecteurs d'une variété différentiable. Premiers espaces de cohomologie. Applications”, C. R. Acad. Sci., Sér. A, Vol. 291, (1980), pp. 331–335. Zbl0462.58011
  11. [11] H. Gargoubi and V. Ovsienko: “Space of linear differential operators on the real line as a module over the Lie algebra of vector fields”, Internat. Math. Res. Notices, Vol. 5, (1996), pp. 235–251. http://dx.doi.org/10.1155/S1073792896000177 Zbl0851.17023
  12. [12] K. Grabowska and J. Grabowski: “The Lie algebra of a Lie algebroid”, In: J. Kubarski et al. (Eds.): Lie Algebroids and Related Topics in Differential Geometry, Vol. 54, Banach Center Publications, Warszawa, 2001, pp. 43–50. Zbl1003.17011
  13. [13] I. Gel'fand and A. Kolmogoroff: “On rings of continuous functions on topological spaces”, C. R. (Dokl.) Acad. Sci. URSS, Vol. 22, (1939), pp. 11–15. Zbl65.0500.03
  14. [14] J. Grabowski: “Isomorphisms and ideals of the Lie algebras of vector fields”, Invent. math., Vol. 50, (1978), pp. 13–33. http://dx.doi.org/10.1007/BF01406466 Zbl0378.57010
  15. [15] J. Grabowski: “Lie algebras of vector fields and generalized foliations”, Publ. Matem., Vol. 37, (1993), pp. 359–367. Zbl0841.53027
  16. [16] J. Grabowski: “Isomorphisms of Poisson and Jacobi brackets”, In: J. Grabowski and P. Urbański (Eds.): Poisson Geometry, Vol. 51, Banach Center Publications, Warszawa, 2000, pp. 79–85. Zbl1017.53071
  17. [17] J. Grabowski: “Isomorphisms of algebras of smooth functions revisited”, Archiv Math., to appear, electronic version at http://arXiv.org/abs/math.DG/0310295. 
  18. [18] J. Grabowski and N. Poncin: “Automorphisms of quantum and classical Poisson algebras”, Comp. Math. London Math. Soc., Vol. 140, (2004), pp. 511–527 http://arXiv.org/abs/math.RA/0211175 v1 Zbl1044.17013
  19. [19] H. Grauert: “On Levi's problem and the embedding of real analytic manifolds”, Ann. Math., Vol. 68, (1958), pp. 460–472. http://dx.doi.org/10.2307/1970257 Zbl0108.07804
  20. [20] H. Hauser and G. Müller: “Affine varieties and Lie algebras of vector fields”, Manusc. Math., Vol. 80, (1993), pp. 309–337. http://dx.doi.org/10.1007/BF03026556 Zbl0805.14004
  21. [21] A. Koriyama: “On Lie algebras of vector fields with invariant submanifolds”, Nagoya Math. J., Vol. 55, (1974), pp. 91–110. Zbl0273.22016
  22. [22] A. Koriyama, Y. Maeda and H. Omori: “On Lie algebras of vector fields”, Trans. Amer. Math. Soc., Vol. 226, (1977), pp. 89–117. http://dx.doi.org/10.2307/1997943 Zbl0318.57023
  23. [23] A. Kriegl and P.W. Michor: “The Convenient Setting of Global Analysis”, Math. Surv. Monog., Vol. 53, American Mathematical Society, (1997). Zbl0889.58001
  24. [24] P. Lecomte: “On some sequence of graded Lie algebras associated to manifolds”, Ann. Glob. Anal. Geom., Vol. 12, (1994), pp. 183–192. http://dx.doi.org/10.1007/BF02108296 Zbl0824.58024
  25. [25] P. Lecomte, P. Mathonet and E. Tousset: “Comparison of some modules of the Lie algebra of vector fields”, Indag. Math., Vol. 7(4), (1996), pp 461–471. http://dx.doi.org/10.1016/S0019-3577(97)89133-1 Zbl0892.58002
  26. [26] P. Lecomte and V. Ovsienko: “Projectively equivariant symbol calculus”, Lett. Math. Phys., Vol. 49, (1999), pp. 173–196. http://dx.doi.org/10.1023/A:1007662702470 Zbl0989.17015
  27. [27] J. Mrčun: On isomorphisms of algebras of smooth functions, electronic version at http://arXiv.org/abs/math.DG/0309179. 
  28. [28] H. Omori: “Infinite dimensional Lie transformation groups”, Lect. Notes in Math., Vol. 427, (1976). Zbl0328.58005
  29. [29] N. Poncin: “Cohomologie de l'algèbre de Lie des opérateurs différentiels sur une variété, à coefficients dans les fonctions”, C.R.A.S. Paris, Vol. 328, Serie I, (1999), pp. 789–794. 
  30. [30] N. Poncin: “Equivariant Operators between some Modules of the Lie Algebra of Vector Fields”, Comm. in Alg., Vol. 32(7), (2004), pp. 2559–2572. http://dx.doi.org/10.1081/AGB-120037399 Zbl1082.17011
  31. [31] N. Poncin: Equivariant Operators between some Modules of the Lie Algebra of Vector Fields, preprint, Centre Universitaire de Luxembourg, (http://arXiv.org/abs/math.RT/0205297). 
  32. [32] M.E. Shanks and L.E. Pursell: “The Lie algebra of a smooth manifolds”, Proc. Amer. Math. Soc., Vol. 5, (1954), pp. 468–472. http://dx.doi.org/10.2307/2031961 Zbl0055.42105
  33. [33] T. Siebert: “Lie algebras of derivations and affine differential geometr over fields of characteristic 0”, Mat. Ann., Vol. 305, (1996), pp. 271–286. http://dx.doi.org/10.1007/BF01444221 Zbl0858.17018
  34. [34] S.M. Skryabin: The regular Lie rings of derivations of commutative rings, preprint WINITI 4403-W87 (1987). 
  35. [35] H. Whitney: “Differentiable manifolds”, Ann. Math., Vol. 37, (1936), pp. 645–680. http://dx.doi.org/10.2307/1968482 Zbl62.1454.01

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.