Long-time asymptotics of solutions to some nonlinear wave equations

Grzegorz Karch

Banach Center Publications (2000)

  • Volume: 52, Issue: 1, page 133-146
  • ISSN: 0137-6934

Abstract

top
In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.

How to cite

top

Karch, Grzegorz. "Long-time asymptotics of solutions to some nonlinear wave equations." Banach Center Publications 52.1 (2000): 133-146. <http://eudml.org/doc/209051>.

@article{Karch2000,
abstract = {In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.},
author = {Karch, Grzegorz},
journal = {Banach Center Publications},
keywords = {Cauchy problems; generalized Korteweg-de Vries-Burgers equation; generalized Benjamin-Bona-Mahony-Burgers equation; higher-order terms of the asymptotic expansion},
language = {eng},
number = {1},
pages = {133-146},
title = {Long-time asymptotics of solutions to some nonlinear wave equations},
url = {http://eudml.org/doc/209051},
volume = {52},
year = {2000},
}

TY - JOUR
AU - Karch, Grzegorz
TI - Long-time asymptotics of solutions to some nonlinear wave equations
JO - Banach Center Publications
PY - 2000
VL - 52
IS - 1
SP - 133
EP - 146
AB - In this paper, we survey some recent results on the asymptotic behavior, as time tends to infinity, of solutions to the Cauchy problems for the generalized Korteweg-de Vries-Burgers equation and the generalized Benjamin-Bona-Mahony-Burgers equation. The main results give higher-order terms of the asymptotic expansion of solutions.
LA - eng
KW - Cauchy problems; generalized Korteweg-de Vries-Burgers equation; generalized Benjamin-Bona-Mahony-Burgers equation; higher-order terms of the asymptotic expansion
UR - http://eudml.org/doc/209051
ER -

References

top
  1. [AB] L. Abdelouhab, Nonlocal dispersive equations in weighted Sobolev spaces, Differential Integral Equations 5 (1992), 307-338. Zbl0786.35110
  2. [Al] E. A. Alarcón, Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 893-916. Zbl0790.35062
  3. [ABH] J. P. Albert, J. L. Bona, and D. Henry, Sufficient conditions for stability of solitary-wave solutions of model equation for long waves, Physica D 24 (1987), 343-366. Zbl0634.35079
  4. [ABS] Ch. J. Amick, J. L. Bona, and M. E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differential Equations 81 (1989), 1-49. Zbl0689.35081
  5. [BBM] T. B. Benjamin, J. L. Bona, and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London Ser. A 272 (1972), 47-78. Zbl0229.35013
  6. [B] P. Biler, Asymptotic behavior in time of solutions to some equations generalizing Korteweg-de Vries-Burgers equation, Bull. Polish Acad. Sci. ser. Math. 32 (1984), 275-282. Zbl0561.35064
  7. [BKW] P. Biler, G. Karch, and W. A. Woyczynski, Asymptotics for multifractal conservation laws, Report of the Mathematical Institute, University of Wrocław, no. 103 (1998) 1-25. 
  8. [BPM] V. Bisognin and G. Perla Menzala, Decay rates of the solutions of nonlinear dispersive equations, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 1231-1246. Zbl0814.35115
  9. [BL1] J. L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive wave equations, Differential Integral Equations 6 (1993), 961-980. Zbl0780.35098
  10. [BL2] J. L. Bona and L. Luo, More results on the decay of solutions to nonlinear, dispersive wave equations , Discrete Contin. Dynam. Systems 1 (1995), 151-193. Zbl0870.35088
  11. [BPW2] J. L. Bona, K. S. Promislow, and C. E. Wayne, On the asymptotic behaviour of solutions to nonlinear, dispersive, dissipative wave equations, J. Math. and Computers in Simulation 37 (1994), 264-277. Zbl0823.35018
  12. [BPW] J. L. Bona, K. S. Promislow, and C. E. Wayne, Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations, Nonlinearity 8 (1995), 1179-1206. Zbl0837.35130
  13. [BS]HUKJ. L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London Ser. A 278 (1975), 555-601. Zbl0306.35027
  14. [BKL] J. Bricmont, A. Kupiainen, and G. Lin, Renormalization group and asymptotics of solutions of nonlinear parabolic equations, Comm. Pure Appl. Math. 47 (1994), 893-922. Zbl0806.35067
  15. [C] A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three, Comm. Partial Differential Equations 19 (1994), 827-872. Zbl0816.35108
  16. [C2] A. Carpio, Large-time behavior in incompressible Navier-Stokes equations, SIAM J. Math. Anal. 27 (1996), 449-475. Zbl0845.76019
  17. [CL] I. L. Chern and T. P. Liu, Convergence to diffusion waves of solutions for viscous conservation laws, Comm. Math. Phys. 110 (1987), 1103-1133. 
  18. [D2] D.B. Dix, Temporal asymptotic behavior of solutions to the Benjamin-Ono-Burgers equation, J. Differential Equations 90 (1991), 238-287. Zbl0784.35098
  19. [D] D. B. Dix, The dissipation of nonlinear dispersive waves: The case of asymptotically weak nonlinearity, Comm. Partial Differential Equations 17 (1992), 1665-1693. Zbl0762.35110
  20. [EVZ1] M. Escobedo, J. L. Vázquez, and E. Zuazua, Asymptotic behaviour and source-type solutions for a diffusion-convection equation, Arch. Rat. Mech. Anal. 124 (1993), 43-65. Zbl0807.35059
  21. [EVZ2] M. Escobedo, J. L. Vázquez, and E. Zuazua, A diffusion-convection equation in several space dimensions, Indiana Univ. Math. J. 42 (1993), 1413-1440. Zbl0791.35059
  22. [EZ] M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in N , J. Funct. Anal. 100 (1991), 119-161. Zbl0762.35011
  23. [GKO] J. A. Goldstein, R. Kajikiya, and S. Oharu, On some nonlinear dispersive equations in several variables, Differential Integral Equations 3 (1990) 617-632. Zbl0735.35103
  24. [H] E. Hopf, The partial differential equation u t + u u x = μ u x x , Comm. Pure Appl. Math. 3 (1950), 201-230. Zbl0039.10403
  25. [K1] G. Karch, L p -decay of solutions to dissipative-dispersive perturbations of conservation laws, Ann. Polon. Math. 67 (1997), 65-86. Zbl0882.35017
  26. [K2] G. Karch, Asymptotic behaviour of solutions to some pseudoparabolic equations, Math. Methods Appl. Sci. 20 (1997), 271-289. Zbl0869.35057
  27. [K3] G. Karch, Selfsimilar large time behavior of solutions to Korteweg-de Vries-Burgers equation, Nonlinear Analysis 35 (1999), 199-219. Zbl0923.35158
  28. [K4] G. Karch Large-time behavior of solutions to nonlinear wave equations: higher-order asymptotics, (1998) 1-24, Report of the Mathematical Institute, University of Wrocław, no. 96, sumitted. http://www.math.uni.wroc.pl/~karch 
  29. [LP] T. P. Liu and M. Pierre, Source solutions and asymptotic behavior in conservation laws, J. Diff. Eqns. 51 (1984), 419-441. Zbl0545.35057
  30. [NS]HUKP. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, Amer. Math. Soc. Series, Transl. of Math. Monographs, vol. 133 (1994). 
  31. [NS2]HUKP. I. Naumkin and I. A. Shishmarev, An asymptotic relationship between solutions of different nonlinear equations for large time values. I. Differentsialnye Uravneniya 30 (1994), no. 5, 873-881. Transl.: Differential Equations 30 (1994), no. 5, 806-814. 
  32. [PW] C.-A. Pillet and C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian, partial differential equations, J. Differential Equations 141 (1997), 310-326. Zbl0890.35016
  33. [Saut]HUKJ.-C. Saut, Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. pures appl. 58 (1979), 21-61. Zbl0449.35083
  34. [SR]HUKM. E. Schonbek and S. V. Rajopadhye, Asymptotic behaviour of solutions to the Korteweg-de Vries-Burgers system, Ann. Inst. H. Poincaré, Analyse non linéaire 12 (1995), 425-457. Zbl0836.35144
  35. [W] C. E. Wayne, Invariant manifolds for parabolic partial differential equations on unbounded domains, Arch. Rational Mech. Anal. 138 (1997), 279-306. Zbl0882.35061
  36. [Z1] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony equations, Acta Math. Sinica, New Series 10 (1994), 428-438. Zbl0813.35111
  37. [Z2] L. Zhang, Decay of solutions of generalized Benjamin-Bona-Mahony-Burgers equations in n-space dimensions, Nonlinear Analysis T.M.A. 25 (1995), 1343-1396. Zbl0838.35118
  38. [Z] E. Zuazua, Weakly nonlinear large time behavior in scalar convection-diffusion equations, Differential Integral Equations 6 (1993), 1481-1491. Zbl0805.35054

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.