Hilbert transform and singular integrals on the spaces of tempered ultradistributions

Andrzej Kamiński; Dušanka Perišić; Stevan Pilipović

Banach Center Publications (2000)

  • Volume: 53, Issue: 1, page 139-153
  • ISSN: 0137-6934

Abstract

top
The Hilbert transform on the spaces S ' * ( R d ) of tempered ultradistributions is defined, uniquely in the sense of hyperfunctions, as the composition of the classical Hilbert transform with the operators of multiplying and dividing a function by a certain elliptic ultrapolynomial. We show that the Hilbert transform of tempered ultradistributions defined in this way preserves important properties of the classical Hilbert transform. We also give definitions and prove properties of singular integral operators with odd and even kernels on the spaces S ' * ( R d ) , whose special cases are the Hilbert transform and Riesz operators.

How to cite

top

Kamiński, Andrzej, Perišić, Dušanka, and Pilipović, Stevan. "Hilbert transform and singular integrals on the spaces of tempered ultradistributions." Banach Center Publications 53.1 (2000): 139-153. <http://eudml.org/doc/209069>.

@article{Kamiński2000,
abstract = {The Hilbert transform on the spaces $S^\{\prime \}*(R^d)$ of tempered ultradistributions is defined, uniquely in the sense of hyperfunctions, as the composition of the classical Hilbert transform with the operators of multiplying and dividing a function by a certain elliptic ultrapolynomial. We show that the Hilbert transform of tempered ultradistributions defined in this way preserves important properties of the classical Hilbert transform. We also give definitions and prove properties of singular integral operators with odd and even kernels on the spaces $S^\{\prime \}*(R^d)$, whose special cases are the Hilbert transform and Riesz operators.},
author = {Kamiński, Andrzej, Perišić, Dušanka, Pilipović, Stevan},
journal = {Banach Center Publications},
keywords = {Hilbert transform; spaces of tempered ultra-distributions; singular integral operators; Riesz operators},
language = {eng},
number = {1},
pages = {139-153},
title = {Hilbert transform and singular integrals on the spaces of tempered ultradistributions},
url = {http://eudml.org/doc/209069},
volume = {53},
year = {2000},
}

TY - JOUR
AU - Kamiński, Andrzej
AU - Perišić, Dušanka
AU - Pilipović, Stevan
TI - Hilbert transform and singular integrals on the spaces of tempered ultradistributions
JO - Banach Center Publications
PY - 2000
VL - 53
IS - 1
SP - 139
EP - 153
AB - The Hilbert transform on the spaces $S^{\prime }*(R^d)$ of tempered ultradistributions is defined, uniquely in the sense of hyperfunctions, as the composition of the classical Hilbert transform with the operators of multiplying and dividing a function by a certain elliptic ultrapolynomial. We show that the Hilbert transform of tempered ultradistributions defined in this way preserves important properties of the classical Hilbert transform. We also give definitions and prove properties of singular integral operators with odd and even kernels on the spaces $S^{\prime }*(R^d)$, whose special cases are the Hilbert transform and Riesz operators.
LA - eng
KW - Hilbert transform; spaces of tempered ultra-distributions; singular integral operators; Riesz operators
UR - http://eudml.org/doc/209069
ER -

References

top
  1. [1] E. J. Beltrami and M. R. Wohlers, Distributions and Boundary Values of Analytic Functions, Academic Press, New York, 1966. Zbl0186.19202
  2. [2] S. Ishikawa, Generalized Hilbert transforms in tempered distributions, Tokyo J. Math. 10 (1987), 119-132. Zbl0692.46040
  3. [3] A. Kamiński, D. Perišić and S. Pilipović, Integral transforms on the spaces of tempered ultradistributions, Demonstratio Math. 33 (2000), to appear. Zbl0973.46032
  4. [4] S. Koizumi, On the singular integrals I-VI, Proc. Japan Acad. 34 (1958), 193-198; 235-240; 594-598; 653-656; 35 (1959), 1-6; 323-328. 
  5. [5] S. Koizumi, On the Hilbert transform I, II, J. Fac. Sci. Hokkaido Univ. Ser. I, 14 (1959), 153-224; 15 (1960), 93-130. 
  6. [6] H. Komatsu, Ultradistributions, I, J. Fac. Sci. Univ. Tokyo Sect. IA 20 (1973), 25-105. 
  7. [7] H. Komatsu, Ultradistributions, II, J. Fac. Sci. Univ. Tokyo Sect. IA 24 (1977), 607-628. 
  8. [8] D. Kovačević and S. Pilipović, Structural properties of the spaces of tempered ultradistributions, in: Complex Analysis and Generalized Functions, Varna 1991, Publ. House of the Bugarian Academy of Sciences, Sofia 1993, 169-184. Zbl0795.46028
  9. [9] J. N. Pandey, An extension of the Gelfand-Shilov technique for Hilbert transforms, Journal of Applicable Analysis 13 (1982), 279-290. Zbl0468.46029
  10. [10] B. E. Petersen, Introduction to the Fourier Transform & Pseudo-differential Operators, Pitman, Boston, 1983. Zbl0523.35001
  11. [11] S. Pilipović, Hilbert transformation of Beurling ultradistributions, Rend. Sem. Mat. Univ. Padova 77 (1987), 1-13. Zbl0636.46043
  12. [12] S. Pilipović, Tempered ultradistributions, Boll. Un. Mat. Ital. (7) 2-B (1988), 235-251. Zbl0657.46030
  13. [13] S. Pilipović, Beurling-Gevrey tempered ultradistributions as boundary values, Portug. Math. 48 (1991), 483-504. Zbl0763.46030
  14. [14] S. Pilipović, Characterization of bounded sets in spaces of ultradistributions, Proc. Amer. Math. Soc. 120 (1994), 1191-1206. Zbl0816.46026
  15. [15] O. P. Singh and J. N. Pandey, The n-dimensional Hilbert transform of distributions, its inversion and applications, Can. J. Math 42 (1990), 239-258. Zbl0715.46016
  16. [16] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, 1971. Zbl0232.42007
  17. [17] H.-G. Tillmann, Randverteilungen analytischer Funktionen und Distributionen, Math. Zeitschr. 59 (1953), 61-83. 
  18. [18] V. S. Vladimirov, Generalized Functions in Mathematical Physics, Mir, Moscow, 1979. Zbl0515.46033
  19. [19] J. Wloka, Grundräume und verallgemeinerte Funktionen, Lecture Notes in Math. 82, Springer, Berlin, 1969. 
  20. [20] B. Ziemian, The modified Cauchy transformation with applications to generalized Taylor expansions, Studia Math. 102 (1992), 1-24. Zbl0815.46035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.