Displaying similar documents to “Hilbert transform and singular integrals on the spaces of tempered ultradistributions”

On the range of the Fourier transform connected with Riemann-Liouville operator

Lakhdar Tannech Rachdi, Ahlem Rouz (2009)

Annales mathématiques Blaise Pascal

Similarity:

We characterize the range of some spaces of functions by the Fourier transform associated with the Riemann-Liouville operator α , α 0 and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schwartz theorems.

Spectrum of Functions for the Dunkl Transform on R^d

Mejjaoli, Hatem, Trimèche, Khalifa (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 42B10 In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on R^d. More precisely, we characterize the functions in the Schwartz space S(R^d) and in L^2k(R^d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support.

Between the Paley-Wiener theorem and the Bochner tube theorem

Zofia Szmydt, Bogdan Ziemian (1995)

Annales Polonici Mathematici

Similarity:

We present the classical Paley-Wiener-Schwartz theorem [1] on the Laplace transform of a compactly supported distribution in a new framework which arises naturally in the study of the Mellin transformation. In particular, sufficient conditions for a function to be the Mellin (Laplace) transform of a compactly supported distribution are given in the form resembling the Bochner tube theorem [2].

On the Range of the Fourier Transform Associated with the Spherical Mean Operator

Jelassi, M., Rachdi, L. (2004)

Fractional Calculus and Applied Analysis

Similarity:

We characterize the range of some spaces of functions by the Fourier transform associated with the spherical mean operator R and we give a new description of the Schwartz spaces. Next, we prove a Paley-Wiener and a Paley-Wiener-Schawrtz theorems.

An Lp − Lq - Version of Morgan's Theorem Associated with Partial Differential Operators

Kamoun, Lotfi (2005)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 42B10, 43A32. In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.

An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform

Mejjaoli, Hatem (2006)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: Primary 35R10, Secondary 44A15 We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.

On the Mellin Transforms of Dirac’S Delta Function, The Hausdorff Dimension Function, and The Theorem by Mellin

Südland, Norbert, Baumann, Gerd (2004)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 44A05, 46F12, 28A78 We prove that Dirac’s (symmetrical) delta function and the Hausdorff dimension function build up a pair of reciprocal functions. Our reasoning is based on the theorem by Mellin. Applications of the reciprocity relation demonstrate the merit of this approach.