On c-sets and products of ideals
Colloquium Mathematicae (1991)
- Volume: 62, Issue: 1, page 1-6
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] M. Balcerzak, Remarks on products of σ-ideals, Colloq. Math. 56 (1988), 201-209. Zbl0679.28003
- [2] J. P. Burgess, Classical hierarchies from a modern stand-point, Part I, C-sets, Fund. Math. 115 (1983), 80-95.
- [3] D. Cenzer and R. D. Mauldin, Inductive definability: measure and category, Adv. in Math. 38 (1980), 55-90. Zbl0466.03018
- [4] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic 51 (1986), 560-569. Zbl0622.03035
- [5] M. Gavalec, Iterated products of ideals of Borel sets, Colloq. Math. 50 (1985), 39-52. Zbl0604.28001
- [6] A. S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337-384. Zbl0277.02019
- [7] C. G. Mendez, On sigma-ideals of sets, Proc. Amer. Math. Soc. 60 (1976), 124-128. Zbl0348.28002
- [8] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam 1980.
- [9] E. A. Selivanovskiĭ, On a class of effective sets (C-sets), Mat. Sb. 35 (1928), 379-413 (in Russian).
- [10] V. V. Srivatsa, Measure and category approximations for C-sets, Trans. Amer. Math. Soc. 278 (1983), 495-505. Zbl0525.04006
- [11] R. L. Vaught, Invariant sets in topology and logic, Fund. Math. 82 (1974), 269-294. Zbl0309.02068