The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On c-sets and products of ideals”

Generalized projections of Borel and analytic sets

Marek Balcerzak (1996)

Colloquium Mathematicae

Similarity:

For a σ-ideal I of sets in a Polish space X and for A ⊆ X 2 , we consider the generalized projection (A) of A given by (A) = x ∈ X: Ax ∉ I, where A x =y ∈ X: 〈x,y〉∈ A. We study the behaviour of with respect to Borel and analytic sets in the case when I is a 2 0 -supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that [ 1 1 ( X 2 ) ] = 1 1 ( X ) for a wide class of 2 0 -supported σ-ideals.

Very small sets

Haim Judah, Amiran Lior, Ireneusz Recław (1997)

Colloquium Mathematicae

Similarity:

On the maximal spectrum of commutative semiprimitive rings

K. Samei (2000)

Colloquium Mathematicae

Similarity:

The space of maximal ideals is studied on semiprimitive rings and reduced rings, and the relation between topological properties of Max(R) and algebric properties of the ring R are investigated. The socle of semiprimitive rings is characterized homologically, and it is shown that the socle is a direct sum of its localizations with respect to isolated maximal ideals. We observe that the Goldie dimension of a semiprimitive ring R is equal to the Suslin number of Max(R).