A class of strongly cooperative systems without compactness
Colloquium Mathematicae (1991)
- Volume: 62, Issue: 1, page 43-47
- ISSN: 0010-1354
Access Full Article
topHow to cite
topMierczyński, Janusz. "A class of strongly cooperative systems without compactness." Colloquium Mathematicae 62.1 (1991): 43-47. <http://eudml.org/doc/210098>.
@article{Mierczyński1991,
author = {Mierczyński, Janusz},
journal = {Colloquium Mathematicae},
keywords = {local flow; strongly monotone; transition operator; stability; strongly cooperative system},
language = {eng},
number = {1},
pages = {43-47},
title = {A class of strongly cooperative systems without compactness},
url = {http://eudml.org/doc/210098},
volume = {62},
year = {1991},
}
TY - JOUR
AU - Mierczyński, Janusz
TI - A class of strongly cooperative systems without compactness
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 43
EP - 47
LA - eng
KW - local flow; strongly monotone; transition operator; stability; strongly cooperative system
UR - http://eudml.org/doc/210098
ER -
References
top- [H1] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II: Convergence almost everywhere, SIAM J. Math. Anal. 16 (1985), 423-439. Zbl0658.34023
- [H2] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988), 1-53. Zbl0624.58017
- [L] K. Leichtweiss, Konvexe Mengen, Springer, Berlin-New York 1980.
- [M1] J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal. 18 (1987), 642-646. Zbl0657.34033
- [M2] J. Mierczyński, Finsler structures as Liapunov functions, in: Proc. Eleventh Internat. Conf. on Nonlinear Oscillations, Budapest, August 17-23, 1987, M. Farkas, V. Kertész and G. Stépán (eds.), János Bolyai Math. Soc., Budapest 1987, 447-450.
- [P] P. Poláčik, Convergence in smooth strongly monotone flows defined by semilinear parabolic equations, J. Differential Equations 79 (1989), 89-110. Zbl0684.34064
- [S] H. L. Smith, Systems of ordinary differential equations which generate an order preserving flow. A survey of results, SIAM Rev. 30 (1988), 87-114. Zbl0674.34012
- [ST] H. L. Smith and H. R. Thieme, Quasi convergence and stability for strongly order-preserving semiflows, SIAM J. Math. Anal. 21 (1990), 673-692. Zbl0704.34054
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.