Uniqueness for a class of cooperative systems of ordinary differential equations

Janusz Mierczyński

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 21-23
  • ISSN: 0010-1354

How to cite

top

Mierczyński, Janusz. "Uniqueness for a class of cooperative systems of ordinary differential equations." Colloquium Mathematicae 67.1 (1994): 21-23. <http://eudml.org/doc/210260>.

@article{Mierczyński1994,
author = {Mierczyński, Janusz},
journal = {Colloquium Mathematicae},
keywords = {quasimonotone systems; Carathéodory hypotheses; uniqueness},
language = {eng},
number = {1},
pages = {21-23},
title = {Uniqueness for a class of cooperative systems of ordinary differential equations},
url = {http://eudml.org/doc/210260},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Mierczyński, Janusz
TI - Uniqueness for a class of cooperative systems of ordinary differential equations
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 21
EP - 23
LA - eng
KW - quasimonotone systems; Carathéodory hypotheses; uniqueness
UR - http://eudml.org/doc/210260
ER -

References

top
  1. [1] E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Zbl0064.33002
  2. [2] M. W. Hirsch, Systems of differential equations which are competitive or cooperative. I. Limit sets, SIAM J. Math. Anal. 13 (1982) 167-179. Zbl0494.34017
  3. [3] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. II. Convergence almost everywhere, ibid. 16 (1985), 423-439. 
  4. [4] M. W. Hirsch, Stability and convergence in strongly monotone dynamical systems, J. Reine Angew. Math. 383 (1988), 1-53. Zbl0624.58017
  5. [5] Jiang Jifa, Periodic time dependent cooperative systems of differential equations with a first integral, Ann. Differential Equations 8 (1992), 429-437. Zbl0773.34034
  6. [6] J. Mierczyński, Strictly cooperative systems with a first integral, SIAM J. Math. Anal. 18 (1987), 642-646. Zbl0657.34033
  7. [7] J. Mierczyński, A class of strongly cooperative systems without compactness, Colloq. Math. 62 (1991), 43-47. Zbl0737.34032
  8. [8] F. Nakajima, Periodic time-dependent gross-substitute systems, SIAM J. Appl. Math. 36 (1979), 421-427. Zbl0422.90021
  9. [9] G. R. Sell and F. Nakajima, Almost periodic gross-substitute dynamical systems, Tôhoku Math. J. (2) 32 (1980), 255-263. Zbl0423.34059
  10. [10] J. Szarski, Differential Inequalities, 2nd revised ed., Monograf. Mat. 43, PWN, Warszawa, 1967. Zbl0171.01502
  11. [11] B. Tang, Y. Kuang and H. L. Smith, Strictly nonautonomous cooperative system with a first integral, SIAM J. Math. Anal. 24 (1993), 1331-1339. Zbl0794.34035
  12. [12] T. Ważewski, Systèmes des équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs applications, Ann. Soc. Polon. Math. 23 (1950), 112-166. Zbl0041.20705

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.