On the structure of G-spaces

Jesús Castillo

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 1, page 81-90
  • ISSN: 0010-1354

How to cite

top

Castillo, Jesús. "On the structure of G-spaces." Colloquium Mathematicae 62.1 (1991): 81-90. <http://eudml.org/doc/210103>.

@article{Castillo1991,
author = {Castillo, Jesús},
journal = {Colloquium Mathematicae},
keywords = {reduced projective limits of Banach spaces with approximable linking maps; Schwartz spaces},
language = {eng},
number = {1},
pages = {81-90},
title = {On the structure of G-spaces},
url = {http://eudml.org/doc/210103},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Castillo, Jesús
TI - On the structure of G-spaces
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 1
SP - 81
EP - 90
LA - eng
KW - reduced projective limits of Banach spaces with approximable linking maps; Schwartz spaces
UR - http://eudml.org/doc/210103
ER -

References

top
  1. [1] S. F. Bellenot, Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis, Compositio Math. 42 (1981), 273-278. Zbl0432.46003
  2. [2] A. Benndorf, On the relation of the bounded approximation property and a finite dimensional decomposition in nuclear Fréchet spaces, Studia Math. 75 (1983), 103-119. Zbl0541.46002
  3. [3] J. M. F. Castillo, An internal characterization of G-spaces, Portugal. Math. 44 (1987), 63-67. Zbl0638.46005
  4. [4] J. M. F. Castillo, La estructura de los G-espacios, Tesis Doctoral, Publ. Dept. Mat. Univ. Extremadura 16, 1986. 
  5. [5] J. M. F. Castillo, On the BAP in Fréchet Schwartz spaces and their duals, Monatsh. Math. 105 (1988), 43-46. Zbl0639.46003
  6. [6] E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, 1979. Zbl0403.46005
  7. [7] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955). 
  8. [8] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart 1981. 
  9. [9] G. Köthe, Topological Vector Spaces I, II, Springer, 1969, 1979. Zbl0179.17001
  10. [10] M. L. Lourenço, A projective limit representation of DFC-spaces with the approximation property, J. Math. Anal. Appl. 115 (1986), 422-433. Zbl0604.46001
  11. [11] E. Nelimarkka, The approximation property and locally convex spaces defined by the ideal of approximable operators, Math. Nachr. 107 (1982), 349-356. Zbl0536.46002
  12. [12] S. Rolewicz, On operator theory and control theory, in: Proc. Internat. Conf. on Operator Algebras, Ideals, and their Applications in Theoretical Physics, Leipzig 1977, Teubner Texte zur Math., Teubner, 1978, 114-118. 
  13. [13] M. Schottenloher, Cartan-Thullen theorem for domains spread over DFM-spaces, J. Reine Angew. Math. 345 (1983), 201-220. Zbl0514.46029
  14. [14] T. Terzioğlu, Approximation property of co-nuclear spaces, Math. Ann. 191 (1971), 35-37. Zbl0198.16105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.