Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis

Steven F. Bellenot

Compositio Mathematica (1980)

  • Volume: 42, Issue: 3, page 273-278
  • ISSN: 0010-437X

How to cite

top

Bellenot, Steven F.. "Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis." Compositio Mathematica 42.3 (1980): 273-278. <http://eudml.org/doc/89479>.

@article{Bellenot1980,
author = {Bellenot, Steven F.},
journal = {Compositio Mathematica},
keywords = {Schwartz variety; barreled; bornological; Schwartz space; Frechet space; Köthe sequence space; unconditional basis; universal generator},
language = {eng},
number = {3},
pages = {273-278},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis},
url = {http://eudml.org/doc/89479},
volume = {42},
year = {1980},
}

TY - JOUR
AU - Bellenot, Steven F.
TI - Each Schwartz Fréchet space is a subspace of a Schwartz Fréchet space with an unconditional basis
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 42
IS - 3
SP - 273
EP - 278
LA - eng
KW - Schwartz variety; barreled; bornological; Schwartz space; Frechet space; Köthe sequence space; unconditional basis; universal generator
UR - http://eudml.org/doc/89479
ER -

References

top
  1. [1] S.F. Bellenot: Prevarieties and intertwined completeness of locally convex spaces. Math. Ann.217 (1975), 59-67. Zbl0295.46013MR397347
  2. [2] S.F. Bellenot: The Schwartz-Hilbert variety. Mich. Math. J.22 (1975), 373-377. Zbl0308.46002MR394086
  3. [3] S.F. Bellenot: Factorization of compact operators and uniform finite representability of Banach spaces with applications to Schwartz spaces. Studia Math.62 (1978) 273-286. Zbl0393.47015MR506670
  4. [4] S.F. Bellenot: Basic sequences in non-Schwartz Fréchet spaces. Trans. Amer. Math. Soc.258 (1980), 199-216. Zbl0426.46001MR554329
  5. [5] J. Diestel, S.A. Morris and S.A. Saxon: Varieties of linear topological spaces. Trans. Amer. Math. Soc.172 (1972), 207-230. Zbl0252.46001MR316992
  6. [6] H. Jarchow: Die Universalität des Räumes c0 für die Klasse der Schwartz-Räume. Math. Ann.203 (1973), 211-214. Zbl0242.46032MR320700
  7. [7] J.L. Kelly and T. Namioka: Linear Topological Spaces, Van Nostrand, 1963. Zbl0115.09902MR166578
  8. [8] G. Köthe: Topological Vector Spaces, I, Springer-Verlag, 1969. Zbl0179.17001MR248498
  9. [9] V.B. Moscatelli: Sur les espaces de Schwartz et ultranucléaires universels. C. R. Acad. Sc. Paris (serie A), 280 (1975), 937-940. Zbl0312.46009MR383026
  10. [10] A. Pietsch: Nuclear Locally Convex Spaces, Springer-Verlag, 1972. Zbl0236.46001MR350360
  11. [11] A. Pietsch: Ideals of operators on Banach spaces and locally convex spaces. Proc. III Symp. General Topology, Prague, 1971. Zbl0308.47024
  12. [12] D.J. Randtke: A simple example of a universal Schwartz space. Proc. Amer. Math. Soc.37 (1973), 185-188. Zbl0251.46005MR312192
  13. [13] D.J. Randtke: On the embedding of Schwartz spaces into product spaces. Proc. Amer. Math. Soc.55 (1976), 87-92. Zbl0343.46007MR410316

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.