Holomorphic Lipschitz functions and application to the v -problem

Der-Chen Chang; Steven Krantz

Colloquium Mathematicae (1991)

  • Volume: 62, Issue: 2, page 227-256
  • ISSN: 0010-1354

How to cite

top

Chang, Der-Chen, and Krantz, Steven. "Holomorphic Lipschitz functions and application to the $v{∂}$-problem." Colloquium Mathematicae 62.2 (1991): 227-256. <http://eudml.org/doc/210111>.

@article{Chang1991,
author = {Chang, Der-Chen, Krantz, Steven},
journal = {Colloquium Mathematicae},
keywords = {-problem; holomorphic function; Lipschitz; pseudoconvex domain},
language = {eng},
number = {2},
pages = {227-256},
title = {Holomorphic Lipschitz functions and application to the $v\{∂\}$-problem},
url = {http://eudml.org/doc/210111},
volume = {62},
year = {1991},
}

TY - JOUR
AU - Chang, Der-Chen
AU - Krantz, Steven
TI - Holomorphic Lipschitz functions and application to the $v{∂}$-problem
JO - Colloquium Mathematicae
PY - 1991
VL - 62
IS - 2
SP - 227
EP - 256
LA - eng
KW - -problem; holomorphic function; Lipschitz; pseudoconvex domain
UR - http://eudml.org/doc/210111
ER -

References

top
  1. [1] G. Aladro, The comparability of the Kobayashi approach region and the admissible approach region, Illinois J. Math. 33 (1989), 42-63. Zbl0647.32023
  2. [2] J. Belanger, Hölder estimates for in 2 , Ph.D. dissertation, Princeton University, 1987. 
  3. [3] T. Bloom and I. Graham, A geometric characterization of points of type m on real submanifolds of n , J. Differential Geom. 12 (1977), 171-182. Zbl0363.32013
  4. [4] D. Catlin, Estimates of invariant metrics on pseudoconvex domains of dimension two, Math. Z. 200 (1989), 429-466. Zbl0661.32030
  5. [5] D.-C. Chang, An application of Ricci-Stein Theorem to estimates of the C-R equations, in: Analysis and PDE, C. Sadosky (ed.), Dekker, 1990, 51-84. 
  6. [6] M. Christ, Regularity properties of the b equation on weakly pseudoconvex CR manifolds of dimension 3, J. Amer. Math. Soc. 1 (1988), 587-646. Zbl0671.35017
  7. [7] J. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math. 115 (1982), 615-637. Zbl0488.32008
  8. [8] C. Fefferman and J. J. Kohn, Hölder estimates on domains in two complex dimensions and on three dimensional CR manifolds, Adv. in Math. 69 (1988), 223-303. Zbl0649.35068
  9. [9] J. J. Kohn, Boundary behavior of on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. Zbl0256.35060
  10. [10] S. G. Krantz, Fatou Theorems on domains in n , Bull. Amer. Math. Soc. 16 (1987), 93-96. Zbl0614.32007
  11. [11] S. G. Krantz, Invariant metrics and boundary behavior of holomorphic functions, J. Geometric Anal. 1 (1991), to appear. Zbl0728.32002
  12. [12] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, New York 1982. Zbl0471.32008
  13. [13] S. G. Krantz, Lipschitz spaces, smoothness of functions, and approximation theory, Exposition. Math. 3 (1983), 193-260. Zbl0518.46018
  14. [14] S. G. Krantz, Smoothness of harmonic and holomorphic functions, in: Proc. Sympos. Pure Math. 35, Amer. Math. Soc., 1979, 63-67. 
  15. [15] S. G. Krantz, Boundary values and estimates for holomorphic functions of several complex variables, Duke Math. J. 47 (1980), 81-98. 
  16. [16] S. G. Krantz, On a theorem of Stein, Trans. Amer. Math. Soc. 320 (1990), 625-642. Zbl0707.32002
  17. [17] S. G. Krantz, Characterization of various domains of holomorphy via -estimates and application to a problem of Kohn, Illinois J. Math. 23 (1979), 267-285. Zbl0394.32009
  18. [18] S. G. Krantz and D. Ma, Bloch functions on strongly pseudoconvex domains, Indiana Univ. Math. J. 37 (1988), 145-163. Zbl0628.32006
  19. [19] A. Nagel, E. M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. U.S.A. 78 (1981), 6596-6599. Zbl0517.32002
  20. [20] A. Nagel, J. -P. Rosay, E. M. Stein and S. Wainger, Estimates for the Bergman and Szegö kernels in 2 , Ann. of Math. 129 (1989), 113-149. Zbl0667.32016
  21. [21] R. M. Range, On Hölder estimates for u = f on weakly pseudoconvex domains, in: Proc. Internat. Conf., Cortona 1976-1977, Scuola Norm. Sup., Pisa 1978, 247-267. 
  22. [22] E. M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440-445. Zbl0257.35040

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.