On conjugate Poisson integrals and Riesz transforms for the Hermite expansions

S. Thangavelu

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 1, page 103-113
  • ISSN: 0010-1354

How to cite

top

Thangavelu, S.. "On conjugate Poisson integrals and Riesz transforms for the Hermite expansions." Colloquium Mathematicae 64.1 (1993): 103-113. <http://eudml.org/doc/210159>.

@article{Thangavelu1993,
author = {Thangavelu, S.},
journal = {Colloquium Mathematicae},
keywords = {conjugate Poisson integrals; Hermite function expansions; Riesz transforms; Hermite operator},
language = {eng},
number = {1},
pages = {103-113},
title = {On conjugate Poisson integrals and Riesz transforms for the Hermite expansions},
url = {http://eudml.org/doc/210159},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Thangavelu, S.
TI - On conjugate Poisson integrals and Riesz transforms for the Hermite expansions
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 1
SP - 103
EP - 113
LA - eng
KW - conjugate Poisson integrals; Hermite function expansions; Riesz transforms; Hermite operator
UR - http://eudml.org/doc/210159
ER -

References

top
  1. [1] R. Askey and S. Wainger, Mean convergence of expansions in Laguerre and Hermite series, Amer. J. Math. 87 (1965), 695-708. Zbl0125.31301
  2. [2] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, Princeton, N.J., 1989. Zbl0682.43001
  3. [3] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27-42. Zbl0409.46060
  4. [4] P. A. Meyer, Transformations de Riesz pour les lois Gaussiens, in: Séminaire de Probabilités 18, Lecture Notes in Math. 1059, Springer, 1984, 179-193. 
  5. [5] B. Muckenhoupt, Hermite conjugate expansions, Trans. Amer. Math. Soc. 139 (1969), 243-260. Zbl0175.12701
  6. [6] B. Muckenhoupt and E. Stein, Classical expansions and their relations to conjugate harmonic functions, ibid. 118 (1965), 17-92. Zbl0139.29002
  7. [7] G. Pisier, Riesz transforms: a simpler analytic proof of P. A. Meyer's inequality, preprint. Zbl0645.60061
  8. [8] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1971. 
  9. [9] S. Thangavelu, Summability of Hermite expansions I, Trans. Amer. Math. Soc. 314 (1989), 119-142. Zbl0685.42015
  10. [10] S. Thangavelu, Summability of Hermite expansions II, ibid., 143-170. Zbl0685.42016
  11. [11] S. Thangavelu, Riesz transforms and the wave equation for the Hermite operator, Comm. Partial Differential Equations 15 (1990), 1199-1215. Zbl0709.35068
  12. [12] S. Thangavelu, On almost everywhere and mean convergence of Hermite and Laguerre expansions, Colloq. Math. 60 (1990), 21-34. Zbl0747.42014
  13. [13] W. Urbina, On singular integrals with respect to Gaussian measures, Ann. Scuola Norm. Sup. Pisa 17 (1990), 531-567. Zbl0737.42018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.