A characterization of modular lattices

J. Dudek

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 2, page 193-201
  • ISSN: 0010-1354

How to cite

top

Dudek, J.. "A characterization of modular lattices." Colloquium Mathematicae 64.2 (1993): 193-201. <http://eudml.org/doc/210184>.

@article{Dudek1993,
author = {Dudek, J.},
journal = {Colloquium Mathematicae},
keywords = {idempotent algebra; essentially polynomials; binary algebra; modular lattice},
language = {eng},
number = {2},
pages = {193-201},
title = {A characterization of modular lattices},
url = {http://eudml.org/doc/210184},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Dudek, J.
TI - A characterization of modular lattices
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 2
SP - 193
EP - 201
LA - eng
KW - idempotent algebra; essentially polynomials; binary algebra; modular lattice
UR - http://eudml.org/doc/210184
ER -

References

top
  1. [1] J. Dudek, On binary polynomials in idempotent commutative groupoids, Fund. Math. 120 (1984), 187-191. Zbl0555.20035
  2. [2] J. Dudek, Varieties of idempotent commutative groupoids, ibid., 193-204. Zbl0546.20049
  3. [3] J. Dudek, A polynomial characterization of some idempotent algebras, Acta Sci. Math. (Szeged) 50 (1985), 39-49. Zbl0616.08011
  4. [4] J. Dudek, On the minimal extension of sequences, Algebra Universalis 23 (1986), 308-312. Zbl0627.08001
  5. [5] J. Dudek, A polynomial characterization of nondistributive modular lattices, Colloq. Math. 55 (1988), 195-212. Zbl0665.08005
  6. [6] J. Dudek, Characterizations of distributive lattices, to appear. Zbl1193.06008
  7. [7] J. Dudek and A. Kisielewicz, On finite models of regular identities, Notre Dame J. Formal Logic 30 (2) (1989), 624-628. Zbl0694.03025
  8. [8] G. Grätzer, Compositions of functions, in: Proc. Conference on Universal Algebra (Kingston, 1969), Queen's Univ., Kingston, Ont., 1970, 1-106. 
  9. [9] G. Grätzer, Universal Algebra, 2nd ed., Springer, New York 1979. 
  10. [10] G. Grätzer and J. Płonka, On the number of polynomials of an idempotent algebra I, Pacific J. Math. 32 (1970), 697-709. Zbl0215.06301
  11. [11] J. Luo, Characterizations of distributive bisemilattices and modular lattices, Acta Sci. Natur. Univ. Intramongolicae 18 (4) (1987), 623-633. Zbl1332.06006
  12. [12] J. Płonka, On equational classes of abstract algebras defined by regular equations, Fund. Math. 64 (1969), 241-247. Zbl0187.28702
  13. [13] W. Taylor, Equational logic, Houston J. Math. 5 (1979), Survey, 1-83. Zbl0421.08004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.