The search session has expired. Please query the service again.

Singular integrals with highly oscillating kernels on the product domains

Lung-Kee Chen

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 2, page 293-302
  • ISSN: 0010-1354

How to cite

top

Chen, Lung-Kee. "Singular integrals with highly oscillating kernels on the product domains." Colloquium Mathematicae 64.2 (1993): 293-302. <http://eudml.org/doc/210193>.

@article{Chen1993,
author = {Chen, Lung-Kee},
journal = {Colloquium Mathematicae},
keywords = {highly oscillating kernel; product domains; maximal singular integral},
language = {eng},
number = {2},
pages = {293-302},
title = {Singular integrals with highly oscillating kernels on the product domains},
url = {http://eudml.org/doc/210193},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Chen, Lung-Kee
TI - Singular integrals with highly oscillating kernels on the product domains
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 2
SP - 293
EP - 302
LA - eng
KW - highly oscillating kernel; product domains; maximal singular integral
UR - http://eudml.org/doc/210193
ER -

References

top
  1. [1] C. Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744-745. Zbl0234.42008
  2. [2] R. Fefferman, Singular integrals on product domains, ibid. 4 (1981), 195-201. Zbl0466.42007
  3. [3] R. Fefferman and E. Stein, Singular integrals on product spaces, Adv. in Math. 45 (1982), 117-143. Zbl0517.42024
  4. [4] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, 1985. 
  5. [5] E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, J. Austral. Math. Soc. Ser. A 41 (1986), 1-12. Zbl0623.42008
  6. [6] E. Prestini, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 275-287. Zbl0639.42014
  7. [7] E. Prestini, L 2 boundedness of highly oscillatory integrals on product domains, Proc. Amer. Math. Soc. 104 (1988), 493-497. Zbl0692.42004
  8. [8] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.