Singular integrals with highly oscillating kernels on product spaces

Elena Prestini

Colloquium Mathematicae (2000)

  • Volume: 86, Issue: 1, page 9-13
  • ISSN: 0010-1354

Abstract

top
We prove the L 2 ( 2 ) boundedness of the oscillatory singular integrals P 0 f ( x , y ) = D x e i ( M 2 ( x ) y ' + M 1 ( x ) x ' ) ο v e r x ' y ' f ( x - x ' , y - y ' ) d x ' d y ' for arbitrary real-valued L functions M 1 ( x ) , M 2 ( x ) and for rather general domains D x 2 whose dependence upon x satisfies no regularity assumptions.

How to cite

top

Prestini, Elena. "Singular integrals with highly oscillating kernels on product spaces." Colloquium Mathematicae 86.1 (2000): 9-13. <http://eudml.org/doc/210844>.

@article{Prestini2000,
abstract = {We prove the $L^\{2\}(^\{2\})$ boundedness of the oscillatory singular integrals $P_\{0\} f(x,y)=\int _\{D_\{x\}\} \{\{e^\{i(M_2(x)y^\{\prime \} + M_1(x)x^\{\prime \})\}\}οver\{x^\{\prime \}y^\{\prime \}\}\} f(x-x^\{\prime \},y-y^\{\prime \})dx^\{\prime \}dy^\{\prime \}$ for arbitrary real-valued $L^\{∞\}$ functions $M_\{1\}(x), M_\{2\}(x)$ and for rather general domains $D_\{x\} ⊆ ^\{2\}$ whose dependence upon x satisfies no regularity assumptions.},
author = {Prestini, Elena},
journal = {Colloquium Mathematicae},
keywords = {Fourier series; oscillatory singular integrals; Hardy-Littlewood maximal function; Carleson maximal operator; boundedness},
language = {eng},
number = {1},
pages = {9-13},
title = {Singular integrals with highly oscillating kernels on product spaces},
url = {http://eudml.org/doc/210844},
volume = {86},
year = {2000},
}

TY - JOUR
AU - Prestini, Elena
TI - Singular integrals with highly oscillating kernels on product spaces
JO - Colloquium Mathematicae
PY - 2000
VL - 86
IS - 1
SP - 9
EP - 13
AB - We prove the $L^{2}(^{2})$ boundedness of the oscillatory singular integrals $P_{0} f(x,y)=\int _{D_{x}} {{e^{i(M_2(x)y^{\prime } + M_1(x)x^{\prime })}}οver{x^{\prime }y^{\prime }}} f(x-x^{\prime },y-y^{\prime })dx^{\prime }dy^{\prime }$ for arbitrary real-valued $L^{∞}$ functions $M_{1}(x), M_{2}(x)$ and for rather general domains $D_{x} ⊆ ^{2}$ whose dependence upon x satisfies no regularity assumptions.
LA - eng
KW - Fourier series; oscillatory singular integrals; Hardy-Littlewood maximal function; Carleson maximal operator; boundedness
UR - http://eudml.org/doc/210844
ER -

References

top
  1. [1] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math. 116 (1968), 135-157. Zbl0144.06402
  2. [2] L. K. Chen, Singular integrals with highly oscillating kernels on product domains, Colloq. Math. 64 (1993), 293-302. Zbl0816.42008
  3. [3] C. Fefferman, Pointwise convergence of Fourier series, Ann. of Math. 98 (1973), 551-572. 
  4. [4] R. A. Hunt, On the convergence of Fourier series, in: Orthogonal Expansions and their Continuous Analogues (Edwardsville, IL, 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235-255. 
  5. [5] R. A. Hunt and W. S. Young, A weighted norm inequality for Fourier series, Bull. Amer. Math. Soc. 80 (1974), 274-277. Zbl0283.42004
  6. [6] E. Prestini, Variants of the maximal double Hilbert transform, Trans. Amer. Math. Soc. 290 (1985), 761-771. Zbl0524.44002
  7. [7] E. Prestini, Singular integrals on product spaces with variable coefficients, Ark. Mat. 25 (1987), 276-287. Zbl0639.42014
  8. [8] E. Prestini, L 2 boundedness of highly oscillatory integrals on product domains, Proc. Amer. Math. Soc. 104 (1988), 493-497. 
  9. [9] E. Prestini, A contribution to the study of the partial sums operator S N N 2 for double Fourier series, Ann. Mat. Pura Appl. 134 (1983), 287-300. Zbl0535.42012
  10. [10] E. Prestini, Uniform estimates for families of singular integrals and double Fourier series, Austral. J. Math. 41 (1986), 1-12. Zbl0623.42008
  11. [11] E. Prestini, Singular integrals on product spaces related to Carleson operator, preprint. Zbl1103.42010
  12. [12] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970. Zbl0207.13501

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.