Tame L p -multipliers

Kathryn Hare

Colloquium Mathematicae (1993)

  • Volume: 64, Issue: 2, page 303-314
  • ISSN: 0010-1354

Abstract

top
We call an L p -multiplier m tame if for each complex homomorphism χ acting on the space of L p multipliers there is some γ 0 Γ and |a| ≤ 1 such that χ ( γ m ) = a m ( γ 0 γ ) for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of L p -improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.

How to cite

top

Hare, Kathryn. "Tame $L^p$-multipliers." Colloquium Mathematicae 64.2 (1993): 303-314. <http://eudml.org/doc/210194>.

@article{Hare1993,
abstract = {We call an $L^\{p\}$-multiplier m tame if for each complex homomorphism χ acting on the space of $L^\{p\}$ multipliers there is some $γ_\{0\} ∈ Γ$ and |a| ≤ 1 such that $χ(γm) = am(γ_\{0\}γ)$ for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of $L^\{p\}$-improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.},
author = {Hare, Kathryn},
journal = {Colloquium Mathematicae},
keywords = {multipliers; tame measures; Fourier transform; Rajchman sets; Hardy space; complex Lie group},
language = {eng},
number = {2},
pages = {303-314},
title = {Tame $L^p$-multipliers},
url = {http://eudml.org/doc/210194},
volume = {64},
year = {1993},
}

TY - JOUR
AU - Hare, Kathryn
TI - Tame $L^p$-multipliers
JO - Colloquium Mathematicae
PY - 1993
VL - 64
IS - 2
SP - 303
EP - 314
AB - We call an $L^{p}$-multiplier m tame if for each complex homomorphism χ acting on the space of $L^{p}$ multipliers there is some $γ_{0} ∈ Γ$ and |a| ≤ 1 such that $χ(γm) = am(γ_{0}γ)$ for all γ ∈ Γ. Examples of tame multipliers include tame measures and one-sided Riesz products. Tame multipliers show an interesting similarity to measures. Indeed we show that the only tame idempotent multipliers are measures. We obtain quantitative estimates on the size of $L^{p}$-improving tame multipliers which are similar to those obtained for measures, but are false for non-tame multipliers. One-sided Riesz products are seen to play a similar role in the study of tame multipliers as Riesz products do in the study of measures.
LA - eng
KW - multipliers; tame measures; Fourier transform; Rajchman sets; Hardy space; complex Lie group
UR - http://eudml.org/doc/210194
ER -

References

top
  1. [1] G. Brown, Riesz products and generalized characters, Proc. London Math. Soc. 30 (1975), 209-238. Zbl0325.43003
  2. [2] P. J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191-212. Zbl0099.25504
  3. [3] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977. 
  4. [4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982. Zbl0599.42001
  5. [5] C. Graham, K. Hare and D. Ritter, The size of L p -improving measures, J. Funct. Anal. 84 (1989), 472-495. Zbl0678.43001
  6. [6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979. Zbl0439.43001
  7. [7] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math. 74 (1952), 168-186. Zbl0046.11702
  8. [8] K. Hare, A characterization of L p -improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. Zbl0664.43001
  9. [9] K. Hare, Arithmetic properties of thin sets, Pacific J. Math. 131 (1988), 143-155. Zbl0603.43003
  10. [10] K. Hare, Properties and examples of ( L p , L q ) multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. Zbl0655.43003
  11. [11] K. Hare, Union results for thin sets, Glasgow Math. J. 32 (1990), 241-254. Zbl0714.43010
  12. [12] K. Hare, The size of ( L 2 , L p ) multipliers, Colloq. Math. 63 (1992), 249-262. Zbl0795.43005
  13. [13] B. Host et F. Parreau, Ensembles de Rajchman et ensembles de continuité, C. R. Acad. Sci. Paris 288 (1979), 899-902. Zbl0422.43009
  14. [14] B. Host et F. Parreau, Sur les mesures dont la transformée de Fourier-Stieltjes ne tend pas vers 0 à l'infini, Colloq. Math. 41 (1979), 285-289. Zbl0466.43005
  15. [15] I. Klemes, Idempotent multipliers of H 1 ( T ) , Canad. J. Math. 39 (1987), 1223-1234. 
  16. [16] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York 1971. 
  17. [17] J. F. Méla, Mesures ε-idempotentes de norme bornée, Studia Math. 72 (1982), 131-149. Zbl0503.43004
  18. [18] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 47 (1982), 113-117. Zbl0501.42007
  19. [19] A. Rajchman, Une classe de séries trigonométriques qui convergent presque partout vers zéro, Math. Ann. 101 (1929), 686-700. Zbl55.0162.04
  20. [20] L. T. Ramsey and B. B. Wells, Jr., Fourier-Stieltjes transforms of strongly continuous measures, Michigan Math. J. 24 (1977), 13-19. Zbl0346.43004
  21. [21] C. Rickart, The General Theory of Banach Algebras, Van Nostrand, Princeton 1960. 
  22. [22] D. Ritter, Most Riesz product measures are L p -improving, Proc. Amer. Math. Soc. 97 (1986), 291-295. Zbl0593.43002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.