The size of ( L 2 , L p ) multipliers

Kathryn Hare

Colloquium Mathematicae (1992)

  • Volume: 63, Issue: 2, page 249-262
  • ISSN: 0010-1354

How to cite

top

Hare, Kathryn. "The size of $(L^2,L^p)$ multipliers." Colloquium Mathematicae 63.2 (1992): 249-262. <http://eudml.org/doc/210150>.

@article{Hare1992,
author = {Hare, Kathryn},
journal = {Colloquium Mathematicae},
keywords = {compact abelian group; Fourier transform; multiplier; -improving multipliers; Riesz products; sums of dissociate sets},
language = {eng},
number = {2},
pages = {249-262},
title = {The size of $(L^2,L^p)$ multipliers},
url = {http://eudml.org/doc/210150},
volume = {63},
year = {1992},
}

TY - JOUR
AU - Hare, Kathryn
TI - The size of $(L^2,L^p)$ multipliers
JO - Colloquium Mathematicae
PY - 1992
VL - 63
IS - 2
SP - 249
EP - 262
LA - eng
KW - compact abelian group; Fourier transform; multiplier; -improving multipliers; Riesz products; sums of dissociate sets
UR - http://eudml.org/doc/210150
ER -

References

top
  1. [1] H. Beckner, S. Janson and J. Jerison, Convolution inequalities on the circle, in: Conference on Harmonic Analysis in Honor of Antoni Zygmund (W. Beckner et al., eds.), Wadsworth, Belmont 1983, 32-43. 
  2. [2] A. Bonami, Étude des coefficients de Fourier des fonctions de L p ( G ) , Ann. Inst. Fourier (Grenoble) 20 (2) (1970), 335-402. Zbl0195.42501
  3. [3] M. Christ, A convolution inequality concerning Cantor-Lebesgue measures, Rev. Mat. Iberoamericana 1 (1985), 75-83. Zbl0644.42011
  4. [4] R. E. Edwards, Fourier Series, Vol. 2, Springer, New York 1982. Zbl0599.42001
  5. [5] C. Graham, K. Hare and D. Ritter, The size of L p -improving measures, J. Funct. Anal. 84 (1989), 472-495. Zbl0678.43001
  6. [6] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, New York 1979. Zbl0439.43001
  7. [7] K. Hare, A characterization of L p -improving measures, Proc. Amer. Math. Soc. 102 (1988), 295-299. Zbl0664.43001
  8. [8] K. Hare, Properties and examples of ( L p , L q ) multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. Zbl0655.43003
  9. [9] R. Larson, An Introduction to the Theory of Multipliers, Grundlehren Math. Wiss. 175, Springer, New York, 1971. 
  10. [10] J. López and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Marcel Dekker, New York 1975. 
  11. [11] D. Oberlin, A convolution property of the Cantor-Lebesgue measure, Colloq. Math. 67 (1982), 113-117. Zbl0501.42007
  12. [12] J. Price, Some strict inclusions between spaces of L p -multipliers, Trans. Amer. Math. Soc. 152 (1970), 321-330. Zbl0216.14802
  13. [13] D. Ritter, Most Riesz product mesures are L p -improving, Proc. Amer. Math. Soc. 97 (1986), 291-295. Zbl0593.43002
  14. [14] D. Ritter, Some singular measures on the circle which improve L p spaces, Colloq. Math. 52 (1987), 133-144. Zbl0637.43002
  15. [15] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227. Zbl0091.05802
  16. [16] E. M. Stein, Harmonic analysis on R n , in: Studies in Harmonic Analysis, MAA Stud. Math. 13, J. M. Ash (ed.), 1976, 97-135. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.