Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property
Ronald Bruck; Tadeusz Kuczumow; Simeon Reich
Colloquium Mathematicae (1993)
- Volume: 65, Issue: 2, page 169-179
- ISSN: 0010-1354
Access Full Article
topHow to cite
topBruck, Ronald, Kuczumow, Tadeusz, and Reich, Simeon. "Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property." Colloquium Mathematicae 65.2 (1993): 169-179. <http://eudml.org/doc/210212>.
@article{Bruck1993,
author = {Bruck, Ronald, Kuczumow, Tadeusz, Reich, Simeon},
journal = {Colloquium Mathematicae},
keywords = {convergence of iterates; uniform Opial property; asymptotically nonexpansive mapping; asymptotically nonexpensive mappings in the intermediate sense; Banach space with the Opial condition; fixed points},
language = {eng},
number = {2},
pages = {169-179},
title = {Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property},
url = {http://eudml.org/doc/210212},
volume = {65},
year = {1993},
}
TY - JOUR
AU - Bruck, Ronald
AU - Kuczumow, Tadeusz
AU - Reich, Simeon
TI - Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property
JO - Colloquium Mathematicae
PY - 1993
VL - 65
IS - 2
SP - 169
EP - 179
LA - eng
KW - convergence of iterates; uniform Opial property; asymptotically nonexpansive mapping; asymptotically nonexpensive mappings in the intermediate sense; Banach space with the Opial condition; fixed points
UR - http://eudml.org/doc/210212
ER -
References
top- [1] J.-B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1511-1514. Zbl0307.47006
- [2] J.-B. Baillon and R. E. Bruck, Ergodic theorems and the asymptotic behavior of contraction semigroups, preprint.
- [3] H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490. Zbl0526.46037
- [4] R. E. Bruck, On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math. 29 (1978), 1-16. Zbl0367.47037
- [5] R. E. Bruck, Asymptotic behavior of nonexpansive mappings, in: Contemp. Math. 18, Amer. Math. Soc., 1983, 1-47. Zbl0528.47039
- [6] J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Random products of nonexpansive mappings in spaces with the Opial property, ibid. 144, 1993, to appear. Zbl0803.47052
- [7] M. Edelstein and R. C. O'Brien, Nonexpansive mappings, asymptotic regularity, and successive approximations, J. London Math. Soc. (2) 1 (1978), 547-554. Zbl0421.47031
- [8] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174. Zbl0256.47045
- [9] K. Goebel and T. Kuczumow, Irregular convex sets with the fixed point property for nonexpansive mappings, Colloq. Math. 40 (1978), 259-264. Zbl0418.47031
- [10] J. Górnicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolinae 30 (1989), 249-252. Zbl0686.47045
- [11] J. Górnicki, Nonlinear ergodic theorems for asymptotically nonexpansive mappings in Banach spaces satisfying Opial's condition, J. Math. Anal. Appl. 161 (1991), 440-446. Zbl0756.47037
- [12] J. P. Gossez and E. Lami-Dozo, Some geometric properties related to the fixed point theory for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-575. Zbl0223.47025
- [13] S. Ishikawa, Fixed points and iterations of nonexpansive mappings in Banach space, Proc. Amer. Math. Soc. 5 (1976), 65-71. Zbl0352.47024
- [14] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17 (1974), 339-346. Zbl0286.47034
- [15] T. Kuczumow, Weak convergence theorems for nonexpansive mappings and semigroups in Banach spaces with Opial's property, Proc. Amer. Math. Soc. 93 (1985), 430-432. Zbl0585.47043
- [16] T. Kuczumow and S. Reich, Opial's property and James' quasi-reflexive spaces, preprint. Zbl0818.46019
- [17] C. Lennard, A new convexity property that implies a fixed point property for , Studia Math. 100 (1991), 95-108.
- [18] T. C. Lim, Asymptotic center and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math. 90 (1980), 135-143. Zbl0454.47046
- [19] H. Oka, Nonlinear ergodic theorems for commutative semigroups of asymptotically nonexpansive mappings, Nonlinear Anal. 18 (1992), 619-635. Zbl0753.47044
- [20] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. Zbl0179.19902
- [21] S. Prus, Banach spaces with the uniform Opial property, Nonlinear Anal. 18 (1992), 697-704. Zbl0786.46023
- [22] S. Reich, Nonlinear evolution equations and nonlinear ergodic theorems, ibid. 1 (1976/77), 319-330. Zbl0359.34059
- [23] S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approx. Theory 24 (1978), 269-272. Zbl0404.47032
- [24] S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl. 91 (1983), 547-551. Zbl0521.47034
- [25] J. Schu, Iterative construction of fixed points of asymptotically nonexpansive mappings, ibid. 158 (1991), 407-413. Zbl0734.47036
- [26] K.-K. Tan and H.-K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36.
- [27] D. Tingley, An asymptotically nonexpansive commutative semigroup with no fixed points, Proc. Amer. Math. Soc. 97 (1986), 107-113. Zbl0592.47049
- [28] H.-K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146. Zbl0747.47041
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.