Nonbasic harmonic maps onto convex wedges

Josephi Cima; Alberti Livingston

Colloquium Mathematicae (1993)

  • Volume: 66, Issue: 1, page 9-22
  • ISSN: 0010-1354

Abstract

top
We construct a nonbasic harmonic mapping of the unit disk onto a convex wedge. This mapping satisfies the partial differential equation f z ¯ = a f z where a(z) is a nontrivial extreme point of the unit ball of H .

How to cite

top

Cima, Josephi, and Livingston, Alberti. "Nonbasic harmonic maps onto convex wedges." Colloquium Mathematicae 66.1 (1993): 9-22. <http://eudml.org/doc/210239>.

@article{Cima1993,
abstract = {We construct a nonbasic harmonic mapping of the unit disk onto a convex wedge. This mapping satisfies the partial differential equation $\{f_\{\bar\{z\}\}\}=af_\{z\}$ where a(z) is a nontrivial extreme point of the unit ball of $H^∞$.},
author = {Cima, Josephi, Livingston, Alberti},
journal = {Colloquium Mathematicae},
language = {eng},
number = {1},
pages = {9-22},
title = {Nonbasic harmonic maps onto convex wedges},
url = {http://eudml.org/doc/210239},
volume = {66},
year = {1993},
}

TY - JOUR
AU - Cima, Josephi
AU - Livingston, Alberti
TI - Nonbasic harmonic maps onto convex wedges
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 1
SP - 9
EP - 22
AB - We construct a nonbasic harmonic mapping of the unit disk onto a convex wedge. This mapping satisfies the partial differential equation ${f_{\bar{z}}}=af_{z}$ where a(z) is a nontrivial extreme point of the unit ball of $H^∞$.
LA - eng
UR - http://eudml.org/doc/210239
ER -

References

top
  1. [1] Y. Abu-Muhanna and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. (6) 32 (1987), 1489-1530. Zbl0644.30003
  2. [2] G. Choquet, Sur un type de transformation analytique généralisant la représenta- tion conforme et définie au moyen de fonctions harmoniques, Bull. Sci. Math. 69 (1945), 156-165. Zbl0063.00851
  3. [3] J. Cima and A. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110. Zbl0724.30011
  4. [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. Zbl0506.30007
  5. [5] W. Hengartner and G. Schober, On schlicht mappings to domains convex in one direction, Comment. Math. Helv. 45 (1970), 303-314. Zbl0203.07604
  6. [6] W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. London Math. Soc. (2) 33 (1986), 473-483. Zbl0626.30018
  7. [7] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31. 
  8. [8] E. Hille, Analytic Function Theory, Vol. II, Ginn, 1962. Zbl0102.29401
  9. [9] H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math.-Verein. 35 (1926), 123-124. Zbl52.0498.03
  10. [10] P. Koosis, Introduction to H p Spaces, London Math., Soc. Lecture Note Ser. 40, Cambridge University Press, 1980. Zbl0435.30001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.