Univalent harmonic mappings II

Albert E. Livingston

Annales Polonici Mathematici (1997)

  • Volume: 67, Issue: 2, page 131-145
  • ISSN: 0066-2216

Abstract

top
Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class S H ( U , Ω ( a , b ) ) of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, f z ( 0 ) > 0 and f z ̅ ( 0 ) = 0 .

How to cite

top

Albert E. Livingston. "Univalent harmonic mappings II." Annales Polonici Mathematici 67.2 (1997): 131-145. <http://eudml.org/doc/270739>.

@article{AlbertE1997,
abstract = {Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class $S_H (U,Ω(a,b))$ of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, $f_z(0) > 0$ and $f_z̅(0) = 0$.},
author = {Albert E. Livingston},
journal = {Annales Polonici Mathematici},
keywords = {univalent harmonic mappings; coefficient bounds; distortion theorems; univalent harmonic function; extremal functions},
language = {eng},
number = {2},
pages = {131-145},
title = {Univalent harmonic mappings II},
url = {http://eudml.org/doc/270739},
volume = {67},
year = {1997},
}

TY - JOUR
AU - Albert E. Livingston
TI - Univalent harmonic mappings II
JO - Annales Polonici Mathematici
PY - 1997
VL - 67
IS - 2
SP - 131
EP - 145
AB - Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class $S_H (U,Ω(a,b))$ of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, $f_z(0) > 0$ and $f_z̅(0) = 0$.
LA - eng
KW - univalent harmonic mappings; coefficient bounds; distortion theorems; univalent harmonic function; extremal functions
UR - http://eudml.org/doc/270739
ER -

References

top
  1. [1] Y. Abu-Muhanna and G. Schober, Harmonic mappings onto convex domains, Canad. J. Math. 39 (1987), 1489-1530. Zbl0644.30003
  2. [2] J. A. Cima and A. E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables Theory Appl. 11 (1989), 95-110. Zbl0724.30011
  3. [3] J. A. Cima and A. E. Livingston, Nonbasic harmonic maps onto convex wedges, Colloq. Math. 66 (1993), 9-22. Zbl0820.30015
  4. [4] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25. Zbl0506.30007
  5. [5] W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), 1-31. 
  6. [6] W. Hengartner and G. Schober, Curvature estimates for some minimal surfaces, in: Complex Analysis, J. Hersch and A. Huber (eds.), Birkhäuser, 1988, 87-100. Zbl0664.30012
  7. [7] A. E. Livingston, Univalent harmonic mappings, Ann. Polon. Math. 57 (1992), 57-70. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.