Indépendance linéaire et classification topologique des espaces normés

Robert Cauty

Colloquium Mathematicae (1993)

  • Volume: 66, Issue: 2, page 243-255
  • ISSN: 0010-1354

How to cite

top

Cauty, Robert. "Indépendance linéaire et classification topologique des espaces normés." Colloquium Mathematicae 66.2 (1993): 243-255. <http://eudml.org/doc/210246>.

@article{Cauty1993,
author = {Cauty, Robert},
journal = {Colloquium Mathematicae},
keywords = {topology of vector spaces},
language = {fre},
number = {2},
pages = {243-255},
title = {Indépendance linéaire et classification topologique des espaces normés},
url = {http://eudml.org/doc/210246},
volume = {66},
year = {1993},
}

TY - JOUR
AU - Cauty, Robert
TI - Indépendance linéaire et classification topologique des espaces normés
JO - Colloquium Mathematicae
PY - 1993
VL - 66
IS - 2
SP - 243
EP - 255
LA - fre
KW - topology of vector spaces
UR - http://eudml.org/doc/210246
ER -

References

top
  1. [1] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa, 1975. Zbl0304.57001
  2. [2] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite dimensional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  3. [3] R. Cauty, Caractérisation topologique de l'espace des fonctions dérivables, Fund. Math. 138 (1991), 35-58. Zbl0770.54015
  4. [4] R. Cauty, Ensembles absorbants pour les classes projectives, ibid., à paraître. 
  5. [5] R. Cauty, Une famille d'espaces préhilbertiens σ-compacts ayant la puissance du continu, Bull. Polish Acad. Sci. 40 (1992), 41-43. 
  6. [6] R. Cauty and T. Dobrowolski, Applying coordinate products to the topological identification of normed spaces, Trans. Amer. Math. Soc. 337 (1993), 625-649. Zbl0820.57015
  7. [7] D. Curtis, T. Dobrowolski and J. Mogilski, Some applications of the topological characterization of the sigma-compact spaces l f 2 and Σ, ibid. 284 (1984), 837-846. Zbl0563.54023
  8. [8] T. Dobrowolski and J. Mogilski, Absorbing sets in the Hilbert cube related to transfinite dimension, Bull. Polish Acad. Sci. 38 (1990), 185-188. Zbl0782.57012
  9. [9] T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 409-429. 
  10. [10] D. W. Henderson, Z-sets in ANR's, Trans. Amer. Math. Soc. 213 (1975), 205-216. Zbl0315.57004
  11. [11] S. T. Hu, Theory of Retracts, Wayne State University Press, Detroit, 1965. Zbl0145.43003
  12. [12] C. Kuratowski, Topologie I, 4ème édition, PWN, Warszawa, 1958. 
  13. [13] W. Marciszewski, A pre-Hilbert space without any continuous maps onto its own square, Bull. Polish Acad. Sci. 31 (1983), 393-396. Zbl0548.46003
  14. [14] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180. Zbl0627.57016
  15. [15] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, ibid. 90 (1984), 450-454. Zbl0528.54032
  16. [16] J. R. Steel, Analytic sets and Borel isomorphisms, Fund. Math. 108 (1980), 83-88. Zbl0463.03028
  17. [17] H. Toruńczyk, Concerning locally homotopy negligible sets and characterization of l 2 -manifolds, ibid. 101 (1978), 93-110. Zbl0406.55003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.