Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces C p ( X )

Taras Banakh; Robert Cauty

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 1, page 25-33
  • ISSN: 0010-1354

How to cite

top

Banakh, Taras, and Cauty, Robert. "Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_{p}(X)$." Colloquium Mathematicae 73.1 (1997): 25-33. <http://eudml.org/doc/210477>.

@article{Banakh1997,
author = {Banakh, Taras, Cauty, Robert},
journal = {Colloquium Mathematicae},
keywords = {absorber; topological vector space; locally convex; strong universality; totally bounded; precompact; pre-Hilbert; function space ; -set},
language = {fre},
number = {1},
pages = {25-33},
title = {Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_\{p\}(X)$},
url = {http://eudml.org/doc/210477},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Banakh, Taras
AU - Cauty, Robert
TI - Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_{p}(X)$
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 1
SP - 25
EP - 33
LA - fre
KW - absorber; topological vector space; locally convex; strong universality; totally bounded; precompact; pre-Hilbert; function space ; -set
UR - http://eudml.org/doc/210477
ER -

References

top
  1. [1] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, preprint. Zbl0954.57007
  2. [2] C. Bessaga and T. Dobrowolski, Affine and homeomorphic embeddings into l 2 , preprint. Zbl0870.57027
  3. [3] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimen- sional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  4. [4] R. Cauty, Une famille d'espaces préhilbertiens σ-compacts ayant la puissance du continu, Bull. Polish Acad. Sci. Math. 40 (1992), 41-43. 
  5. [5] R. Cauty, Indépendance linéaire et classification topologique des espaces normés, Colloq. Math. 66 (1994), 243-255. Zbl0851.57024
  6. [6] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces C p ( X ) , Fund. Math. 142 (1993), 267-301. Zbl0813.54009
  7. [7] J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. Zbl0525.54010
  8. [8] T. Dobrowolski, Extending homeomorphisms and applications to metric linear spaces without completeness, Trans. Amer. Math. Soc. 313 (1989), 753-784. Zbl0692.57007
  9. [9] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces C p ( X ) of low Borel complexity, ibid. 328 (1991), 307-324. Zbl0768.54016
  10. [10] T. Dobrowolski and J. Mogilski, Sigma-compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 78 (1982), 653-658. Zbl0511.57009
  11. [11] T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), Elsevier, Amsterdam, 1990, 409-429. 
  12. [12] W. Marciszewski, On topological embeddings of linear metric spaces, preprint. Zbl0877.46001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.