Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces

Taras Banakh; Robert Cauty

Colloquium Mathematicae (1997)

  • Volume: 73, Issue: 1, page 25-33
  • ISSN: 0010-1354

How to cite

top

Banakh, Taras, and Cauty, Robert. "Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_{p}(X)$." Colloquium Mathematicae 73.1 (1997): 25-33. <http://eudml.org/doc/210477>.

@article{Banakh1997,
author = {Banakh, Taras, Cauty, Robert},
journal = {Colloquium Mathematicae},
keywords = {absorber; topological vector space; locally convex; strong universality; totally bounded; precompact; pre-Hilbert; function space ; -set},
language = {fre},
number = {1},
pages = {25-33},
title = {Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_\{p\}(X)$},
url = {http://eudml.org/doc/210477},
volume = {73},
year = {1997},
}

TY - JOUR
AU - Banakh, Taras
AU - Cauty, Robert
TI - Universalité forte pour les sous-ensembles totalement bornés. Applications aux espaces $C_{p}(X)$
JO - Colloquium Mathematicae
PY - 1997
VL - 73
IS - 1
SP - 25
EP - 33
LA - fre
KW - absorber; topological vector space; locally convex; strong universality; totally bounded; precompact; pre-Hilbert; function space ; -set
UR - http://eudml.org/doc/210477
ER -

References

top
  1. [1] T. Banakh and R. Cauty, Interplay between strongly universal spaces and pairs, preprint. Zbl0954.57007
  2. [2] C. Bessaga and T. Dobrowolski, Affine and homeomorphic embeddings into , preprint. Zbl0870.57027
  3. [3] M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimen- sional absolute retracts, Michigan Math. J. 33 (1986), 291-313. Zbl0629.54011
  4. [4] R. Cauty, Une famille d'espaces préhilbertiens σ-compacts ayant la puissance du continu, Bull. Polish Acad. Sci. Math. 40 (1992), 41-43. 
  5. [5] R. Cauty, Indépendance linéaire et classification topologique des espaces normés, Colloq. Math. 66 (1994), 243-255. Zbl0851.57024
  6. [6] R. Cauty, T. Dobrowolski and W. Marciszewski, A contribution to the topological classification of the spaces , Fund. Math. 142 (1993), 267-301. Zbl0813.54009
  7. [7] J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill, Function spaces of low Borel complexity, Proc. Amer. Math. Soc. 94 (1985), 703-710. Zbl0525.54010
  8. [8] T. Dobrowolski, Extending homeomorphisms and applications to metric linear spaces without completeness, Trans. Amer. Math. Soc. 313 (1989), 753-784. Zbl0692.57007
  9. [9] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces of low Borel complexity, ibid. 328 (1991), 307-324. Zbl0768.54016
  10. [10] T. Dobrowolski and J. Mogilski, Sigma-compact locally convex metric linear spaces universal for compacta are homeomorphic, Proc. Amer. Math. Soc. 78 (1982), 653-658. Zbl0511.57009
  11. [11] T. Dobrowolski and J. Mogilski, Problems on topological classification of incomplete metric spaces, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), Elsevier, Amsterdam, 1990, 409-429. 
  12. [12] W. Marciszewski, On topological embeddings of linear metric spaces, preprint. Zbl0877.46001

NotesEmbed ?

top

You must be logged in to post comments.