Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below

L. Saloff-Coste

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 109-121
  • ISSN: 0010-1354

How to cite

top

Saloff-Coste, L.. "Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below." Colloquium Mathematicae 67.1 (1994): 109-121. <http://eudml.org/doc/210254>.

@article{Saloff1994,
author = {Saloff-Coste, L.},
journal = {Colloquium Mathematicae},
keywords = {heat diffusion semigroup; Laplace-Beltrami operator; equilibrium; Harnack inequalities; Ricci curvature; logarithmic Sobolev constant},
language = {eng},
number = {1},
pages = {109-121},
title = {Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below},
url = {http://eudml.org/doc/210254},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Saloff-Coste, L.
TI - Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 109
EP - 121
LA - eng
KW - heat diffusion semigroup; Laplace-Beltrami operator; equilibrium; Harnack inequalities; Ricci curvature; logarithmic Sobolev constant
UR - http://eudml.org/doc/210254
ER -

References

top
  1. [1] D. Aldous and P. Diaconis, Strong uniform times and finite random walks, Adv. Appl. Math. 8 (1987), 69-97. 
  2. [2] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in: Ecole d'été de Saint Flour, 1992. 
  3. [3] R. Brooks, On the spectrum of non-compact manifolds with finite volume, Math. Z. 187 (1984), 425-432. Zbl0537.58040
  4. [4] R. Brooks, The spectral geometry of tower of coverings, J. Differential Geom. 23 (1986), 97-107. Zbl0576.58033
  5. [5] R. Brooks, Combinatorial problems in spectral geometry, in: Lecture Notes in Math. 1201, Springer, 1988, 14-32. 
  6. [6] P. Buser, B. Colbois and J. Dodziuk, Tubes and eigenvalues for negatively curved manifolds, J. Geom. Anal. 3 (1993), 1-26. Zbl0766.58054
  7. [7] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. Zbl0493.53035
  8. [8] S. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297. Zbl0329.53035
  9. [9] Th. Coulhon et L. Saloff-Coste, Variétés Riemanniennes isométriques à l'infini, preprint, 1993. 
  10. [10] J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press, Boston, 1989. 
  11. [11] P. Diaconis, Group Representations in Probability and Statistics, IMS, Hayward, CA, 1988. 
  12. [12] P. Diaconis and L. Saloff-Coste, An application of Harnack inequality to random walk on finite nilpotent quotients, preprint, 1993. Zbl0889.60008
  13. [13] P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequality for finite Markov chains, preprint, 1992. 
  14. [14] M. Gromov, Groups of polynomial growth and expanding maps, Publ. IHES 53 (1980). 
  15. [15] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083. Zbl0318.46049
  16. [16] R. Holley and D. Stroock, Uniform and L 2 convergence in one dimensional stochastic Ising models, Comm. Math. Phys. 123 (1989), 85-93. Zbl0666.60104
  17. [17] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1968), 63-65. Zbl0168.27602
  18. [18] P. Li and S.-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, in: Proc. Sympos. Pure Math. 36, Amer. Math. Soc., 1980, 205-239. 
  19. [19] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201. 
  20. [20] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, forthcoming monograph. 
  21. [21] L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286-292. Zbl0099.08402
  22. [22] O. Rothaus, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal. 42 (1981), 102-109. Zbl0471.58027
  23. [23] O. Rothaus, Hypercontractivity and the Bakry-Emery criterion for compact Lie groups, ibid. 65 (1986), 358-367. Zbl0589.58036
  24. [24] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417-450. Zbl0735.58032
  25. [25] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J. 65 (1992), IMRN, 27-38. Zbl0769.58054
  26. [26] L. Saloff-Coste, Quantitative bounds on the convergence of diffusion semigroups to equilibrium, Math. Z., to appear. Zbl1059.43006
  27. [27] P. Sarnack, Some Applications of Modular Forms, Cambridge University Press, 1991. 
  28. [28] D. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys. 144 (1992), 303-323. Zbl0745.60104
  29. [29] N. Varopoulos, Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet, C. R. Acad. Sci. Paris Sér. I 299 (1984), 651-654. Zbl0566.31006
  30. [30] N. Varopoulos, L. Saloff-Coste and Th. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, 1993. Zbl1179.22009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.