Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below
Colloquium Mathematicae (1994)
- Volume: 67, Issue: 1, page 109-121
- ISSN: 0010-1354
Access Full Article
topHow to cite
topSaloff-Coste, L.. "Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below." Colloquium Mathematicae 67.1 (1994): 109-121. <http://eudml.org/doc/210254>.
@article{Saloff1994,
author = {Saloff-Coste, L.},
journal = {Colloquium Mathematicae},
keywords = {heat diffusion semigroup; Laplace-Beltrami operator; equilibrium; Harnack inequalities; Ricci curvature; logarithmic Sobolev constant},
language = {eng},
number = {1},
pages = {109-121},
title = {Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below},
url = {http://eudml.org/doc/210254},
volume = {67},
year = {1994},
}
TY - JOUR
AU - Saloff-Coste, L.
TI - Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 109
EP - 121
LA - eng
KW - heat diffusion semigroup; Laplace-Beltrami operator; equilibrium; Harnack inequalities; Ricci curvature; logarithmic Sobolev constant
UR - http://eudml.org/doc/210254
ER -
References
top- [1] D. Aldous and P. Diaconis, Strong uniform times and finite random walks, Adv. Appl. Math. 8 (1987), 69-97.
- [2] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in: Ecole d'été de Saint Flour, 1992.
- [3] R. Brooks, On the spectrum of non-compact manifolds with finite volume, Math. Z. 187 (1984), 425-432. Zbl0537.58040
- [4] R. Brooks, The spectral geometry of tower of coverings, J. Differential Geom. 23 (1986), 97-107. Zbl0576.58033
- [5] R. Brooks, Combinatorial problems in spectral geometry, in: Lecture Notes in Math. 1201, Springer, 1988, 14-32.
- [6] P. Buser, B. Colbois and J. Dodziuk, Tubes and eigenvalues for negatively curved manifolds, J. Geom. Anal. 3 (1993), 1-26. Zbl0766.58054
- [7] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. Zbl0493.53035
- [8] S. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297. Zbl0329.53035
- [9] Th. Coulhon et L. Saloff-Coste, Variétés Riemanniennes isométriques à l'infini, preprint, 1993.
- [10] J.-D. Deuschel and D. Stroock, Large Deviations, Academic Press, Boston, 1989.
- [11] P. Diaconis, Group Representations in Probability and Statistics, IMS, Hayward, CA, 1988.
- [12] P. Diaconis and L. Saloff-Coste, An application of Harnack inequality to random walk on finite nilpotent quotients, preprint, 1993. Zbl0889.60008
- [13] P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequality for finite Markov chains, preprint, 1992.
- [14] M. Gromov, Groups of polynomial growth and expanding maps, Publ. IHES 53 (1980).
- [15] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), 1061-1083. Zbl0318.46049
- [16] R. Holley and D. Stroock, Uniform and convergence in one dimensional stochastic Ising models, Comm. Math. Phys. 123 (1989), 85-93. Zbl0666.60104
- [17] D. Kazhdan, Connection of the dual space of a group with the structure of its closed subgroups, Functional Anal. Appl. 1 (1968), 63-65. Zbl0168.27602
- [18] P. Li and S.-T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, in: Proc. Sympos. Pure Math. 36, Amer. Math. Soc., 1980, 205-239.
- [19] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), 153-201.
- [20] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, forthcoming monograph.
- [21] L. Payne and H. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal. 5 (1960), 286-292. Zbl0099.08402
- [22] O. Rothaus, Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities, J. Funct. Anal. 42 (1981), 102-109. Zbl0471.58027
- [23] O. Rothaus, Hypercontractivity and the Bakry-Emery criterion for compact Lie groups, ibid. 65 (1986), 358-367. Zbl0589.58036
- [24] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), 417-450. Zbl0735.58032
- [25] L. Saloff-Coste, A note on Poincaré, Sobolev and Harnack inequalities, Duke Math. J. 65 (1992), IMRN, 27-38. Zbl0769.58054
- [26] L. Saloff-Coste, Quantitative bounds on the convergence of diffusion semigroups to equilibrium, Math. Z., to appear. Zbl1059.43006
- [27] P. Sarnack, Some Applications of Modular Forms, Cambridge University Press, 1991.
- [28] D. Stroock and B. Zegarlinski, The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition, Comm. Math. Phys. 144 (1992), 303-323. Zbl0745.60104
- [29] N. Varopoulos, Une généralisation du théorème de Hardy-Littlewood-Sobolev pour les espaces de Dirichlet, C. R. Acad. Sci. Paris Sér. I 299 (1984), 651-654. Zbl0566.31006
- [30] N. Varopoulos, L. Saloff-Coste and Th. Coulhon, Analysis and Geometry on Groups, Cambridge University Press, 1993. Zbl1179.22009
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.