Concentration of measure and logarithmic Sobolev inequalities

Michel Ledoux

Séminaire de probabilités de Strasbourg (1999)

  • Volume: 33, page 120-216

How to cite

top

Ledoux, Michel. "Concentration of measure and logarithmic Sobolev inequalities." Séminaire de probabilités de Strasbourg 33 (1999): 120-216. <http://eudml.org/doc/114006>.

@article{Ledoux1999,
author = {Ledoux, Michel},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Sobolev inequality; isoperimetric inequality; Markov semigroup; Dirichlet form; Brownian motion on a manifold; Gaussian measures; Boltzmann measures; Herbst's basic Laplace transform; concentration inequalities; Bernoulli measures; Poisson measures; Riemannian manifolds with non-negative Ricci curvature},
language = {eng},
pages = {120-216},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Concentration of measure and logarithmic Sobolev inequalities},
url = {http://eudml.org/doc/114006},
volume = {33},
year = {1999},
}

TY - JOUR
AU - Ledoux, Michel
TI - Concentration of measure and logarithmic Sobolev inequalities
JO - Séminaire de probabilités de Strasbourg
PY - 1999
PB - Springer - Lecture Notes in Mathematics
VL - 33
SP - 120
EP - 216
LA - eng
KW - Sobolev inequality; isoperimetric inequality; Markov semigroup; Dirichlet form; Brownian motion on a manifold; Gaussian measures; Boltzmann measures; Herbst's basic Laplace transform; concentration inequalities; Bernoulli measures; Poisson measures; Riemannian manifolds with non-negative Ricci curvature
UR - http://eudml.org/doc/114006
ER -

References

top
  1. [Ai] S. Aida. Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal.158, 152-185 (1998). Zbl0914.47041MR1641566
  2. [A-M-S] S. Aida, T. Masuda, I. Shigekawa. Logarithmic Sobolev inequalities and exponential integrability. J. Funct. Anal.126, 83-101 (1994). Zbl0846.46020MR1305064
  3. [A-S] S. Aida, D. Stroock. Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett.1, 75-86 (1994). Zbl0862.60064MR1258492
  4. [Al] N. Alon. Eigenvalues and expanders. J. Combin. Theory, Ser. B, 38, 78-88 (1987). MR875835
  5. [A-L] C. Ané, M. Ledoux. On logarithmic Sobolev inequalities for continuous time random walks on graphs. Preprint (1998). Zbl0964.60063MR1757600
  6. [Ba1] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes. Ecole d'Eté de Probabilités de St-Flour. Lecture Notes in Math.1581, 1-114 (1994). Springer-Verlag. Zbl0856.47026MR1307413
  7. [Ba2] D. Bakry. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups. New trends in Stochastic Analysis. 43-75 (1997). World Scientific. MR1654503
  8. [Ba-E] D. Bakry, M. Emery. Diffusions hypercontractives. Séminaire de Probabilites XIX. Lecture Notes in Math.1123, 177-206 (1985). Springer-Verlag. Zbl0561.60080MR889476
  9. [Ba-L] D. Bakry, M. Ledoux. Lévy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator. Invent. math.123, 259-281 (1996). Zbl0855.58011MR1374200
  10. [B-L-Q] D. Bakry, M. Ledoux, Z. Qian. Preprint (1997). 
  11. [Be] W. Beckner. Personal communication (1998). 
  12. [BA-L] G. Ben Arous, M. Ledoux. Schilder's large deviation principle without topology. Asymptotic problems in probability theory: Wiener functionals and asymptotics. Pitman Research Notes in Math. Series284, 107-121 (1993). Longman. Zbl0801.60019MR1354164
  13. [B-M1] L. Birgé, P. Massart. From model selection to adaptive estimation. Festschrift for Lucien LeCam: Research papers in Probability and Statistics (D. Pollard, E. Torgersen and G. Yang. eds.) 55-87 (1997). Springer-Verlag. Zbl0920.62042MR1462939
  14. [B-M2] L. Birgé, P. Massart. Minimum contrast estimators on sieves: exponential bounds and rates of convergence (1998). Bernoulli, to appear. Zbl0954.62033MR1653272
  15. [B-B-M] A. Barren, L. Birgé, P. Massart. Risk bounds for model selection via penalization (1998). Probab. Theory Relat. Fields, to appear. Zbl0946.62036MR1679028
  16. [Bob1] S. Bobkov. and On Gross' Talagrand's inequalities on the discrete cube. Vestnik of Syktyvkar University, Ser. 1, 1, 12-19 (1995) (in Russian). Zbl1011.60500MR1717705
  17. [Bob2] S. Bobkov. Some extremal properties of Bernoulli distribution. Probability Theor. Appl.41, 877-884 (1996). Zbl0895.60012MR1687168
  18. [Bob3] S. Bobkov. A functional form of the isoperimetric inequality for the Gaussian measure. J. Funct. Anal.135, 39-49 (1996). Zbl0838.60013MR1367623
  19. [Bob4] S. Bobkov. An isoperimetric inequality on the discrete cube and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probability25, 206-214 (1997). Zbl0883.60031MR1428506
  20. [Bob5] S. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures (1998). Ann. Probability, to appear. Zbl0964.60013MR1742893
  21. [B-G] S. Bobkov, F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities (1997). J. Funct. Anal., to appear. Zbl0924.46027MR1682772
  22. [B-H] S. Bobkov, C. Houdré. Isoperimetric constants for product probability measures. Ann. Probability25, 184-205 (1997). Zbl0878.60013MR1428505
  23. [B-L1] S. Bobkov, M. Ledoux. Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential measure. Probab. Theory Relat. Fields107, 383-400 (1997). Zbl0878.60014MR1440138
  24. [B-L2] S. Bobkov, M. Ledoux. On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures. J. Funct. Anal.156, 347-365 (1998). Zbl0920.60002MR1636948
  25. [Bon] A. Bonami. Etude des coefficients de Fourier des fonctions de LP(G). Ann. Inst. Fourier20, 335-402 (1970). Zbl0195.42501MR283496
  26. [Bor] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. math.30, 207-216 (1975). Zbl0292.60004MR399402
  27. [Br] R. Brooks. On the spectrum of non-compact manifolds with finite volume. Math. Z.187, 425-437 (1984). MR757481
  28. [Cha1] I. Chavel. Eigenvalues in Riemannian geometry. Academic Press (1984). Zbl0551.53001MR768584
  29. [Cha2] I. Chavel. Riemannian geometry - A modern introduction. Cambridge Univ. Press (1993). Zbl0810.53001MR1271141
  30. [Che] S.-Y. Cheng. Eigenvalue comparison theorems and its geometric applications. Math. Z.143, 289-297 (1975). Zbl0329.53035MR378001
  31. [Da] E.B. Davies. Heat kernel and spectral theory. Cambridge Univ. Press (1989). MR990239
  32. [D-S] E.B. Davies, B. Simon. Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal.59, 335-395 (1984). Zbl0568.47034MR766493
  33. [De] A. Dembo. Information inequalities and concentration of measure. Ann. Probability25, 927-939 (1997). Zbl0880.60018MR1434131
  34. [D-Z] A. Dembo, O. Zeitouni. Transportation approach to some concentration inequalities in product spaces. Elect. Comm. in Probab.1, 83-90 (1996). Zbl0916.28003MR1423908
  35. [De-S] J.-D. Deuschel, D. Stroock. Large deviations. Academic Press (1989). Zbl0705.60029MR997938
  36. [D-SC] P. Diaconis, L. Saloff-Coste. Logarithmic Sobolev inequalities for finite Markov chains. Ann. Appl. Prob.6, 695-750 (1996). Zbl0867.60043MR1410112
  37. [Eh] A. Ehrhard. Symétrisation dans l'espace de Gauss. Math. Scand.53, 281-301 (1983). Zbl0542.60003MR745081
  38. [G-M] M. Gromov, V.D. Milman. A topological application of the isoperimetric inequality. Amer. J. Math.105, 843-854 (1983). Zbl0522.53039MR708367
  39. [Gr1] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math.97, 1061-1083 (1975). Zbl0318.46049MR420249
  40. [Gr2] L. Gross. Logarithmic Sobolev inequalities and contractive properties of semigroups. Dirichlet Forms, Varenna1992. Lect. Notes in Math.1563, 54-88 (1993). Springer-Verlag. Zbl0812.47037MR1292277
  41. [G-R] L. Gross, O. Rothaus. Herbst inequalities for supercontractive semigroups. Preprint (1997). Zbl0928.47032MR1648283
  42. [H-Y] Y. Higuchi, N. Yoshida. Analytic conditions and phase transition for Ising models. Lecture Notes in Japanese (1995). 
  43. [H-S] R. Holley, D. Stroock. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys.46, 1159-1194 (1987). Zbl0682.60109MR893137
  44. [H-T] C. Houdré, P. Tetali. Concentration of measure for products of Markov kernels via functional inequalities. Preprint (1997). Zbl0986.28004MR1827807
  45. [Hs1] E.P. Hsu. Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds. Commun. Math. Phys.189, 9-16 (1997). Zbl0892.58083MR1478528
  46. [Hs2] E.P. Hsu. Analysis on Path and Loop Spaces (1996). To appear in IAS/Park City Mathematics Series, Vol. 5, edited by E. P. Hsu and S. R. S. Varadhan, American Mathematical Society and Institute for Advanced Study (1997). Zbl1069.60500MR1678311
  47. [J-S] W.B. Johnson, G. Schechtman. Remarks on Talagrand's deviation inequality for Rademacher functions. Longhorn Notes, Texas (1987). Zbl0753.60024
  48. [Kl] C.A.J. Klaassen. On an inequality of Chernoff. Ann. Probability13, 966-974 (1985). Zbl0576.60015MR799431
  49. [K-S] A. Korzeniowski, D. Stroock. An example in the theory of hypercontractive semigroups. Proc. Amer. Math. Soc.94, 87-90 (1985). Zbl0577.47043MR781062
  50. [Kw-S] S. Kwapien, J. Szulga. Hypercontraction methods in moment inequalities for series of independent random variables in normed spaces. Ann. Probability19, 369-379 (1991). Zbl0718.60044MR1085342
  51. [K-L-O] S. Kwapien, R. Latala, K. Oleszkiewicz. Comparison of moments of sums of independent random variables and differential inequalities. J. Funct. Anal.136, 258-268 (1996). Zbl0864.60014MR1375162
  52. [Le1] M. Ledoux. Isopérimétrie et inégalités de Sobolev logarithmiques gaussiennes. C. R. Acad. Sci.Paris, 306, 79-92 (1988). Zbl0646.60006MR929114
  53. [Le2] M. Ledoux. Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter. J. Math. Kyoto Univ.35, 211-220 (1995). Zbl0836.60074MR1346225
  54. [Le3] M. Ledoux. Isoperimetry and Gaussian Analysis. Ecole d'Eté de Probabilités de St-Flour 1994. Lecture Notes in Math.1648, 165-294 (1996). Springer-Verlag. Zbl0874.60005MR1600888
  55. [Le4] M. Ledoux. On Talagrand's deviation inequalities for product measures. ESAIM Prob. & Stat.1, 63-87 (1996). Zbl0869.60013
  56. [L-T] M. Ledoux, M. Talagrand. Probability in Banach spaces (Isoperimetry and processes). Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag (1991). Zbl0748.60004MR1102015
  57. [L-Y] T.Y. Lee, H.-T. Yau. Logarithmic Sobolev inequality fo some models of random walks. Preprint (1998). MR1675008
  58. [Li] P. Li. A lower bound for the first eigenvalue of the Laplacian on a compact manifold. Indiana Univ. Math. J.28, 1013-1019 (1979). Zbl0429.35054MR551166
  59. [Ly] T. Lyons. Random thoughts on reversible potential theory. Summer School in Potentiel Theory, Joensuu1990. Publications in Sciences26, 71-114University of Joensuu. Zbl0757.31007MR1175217
  60. [MD] C. McDiarmid. On the method of bounded differences. Surveys in Combinatorics. London Math. Soc. Lecture Notes141, 148-188 (1989). Cambridge Univ. Press. Zbl0712.05012MR1036755
  61. [Mar1] K. Marton. Bounding d-distance by information divergence: a method to prove measure concentration. Ann. Probability24, 857-866 (1996). Zbl0865.60017MR1404531
  62. [Mar2] K. Marton. A measure concentration inequality for contracting Markov chains. Geometric and Funct. Anal.6, 556-571 (1997). Zbl0856.60072MR1392329
  63. [Mar3] K. Marton. Measure concentration for a class of random processes. Probab. Theory Relat. Fields110, 427-439 (1998). Zbl0927.60050MR1616492
  64. [Mar4] K. Marton. On a measure concentration of Talagrand for dependent random variables. Preprint (1998). MR1392329
  65. [Mas] P. Massart. About the constants in Talagrand's deviation inequalities for empirical processes (1998). Ann. Probability, to appear. Zbl1140.60310MR1782276
  66. [Mau1] B. Maurey. Constructions de suites symétriques. C. R. Acad. Sci.Paris288, 679-681 (1979). Zbl0398.46019MR533901
  67. [Mau2] B. Maurey. Some deviations inequalities. Geometric and Funct. Anal.1, 188-197 (1991). Zbl0756.60018MR1097258
  68. [Mi] V.D. Milman. Dvoretzky theorem - Thirty years later. Geometric and Funct. Anal.2, 455-479 (1992) . Zbl0787.46016MR1191569
  69. [M-S] V.D. Milman, G. Schechtman. Asymptotic theory of finite dimensional normed spaces. Lecture Notes in Math. 1200 (1986). Springer-Verlag. Zbl0606.46013MR856576
  70. [M-W] C. Muller, F. Weissler. Hypercontractivity of the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal.48, 252-283 (1982). Zbl0506.46022MR674060
  71. [O-V] F. Otto, C. Villani. Generalization of an inequality by Talagrand, viewed as a consequence of the logarithmic Sobolev inequality. Preprint (1998). MR1760620
  72. [Pi] M.S. Pinsker. Information and information stability of random variables and processes. Holden-Day, San Franscico (1964). Zbl0125.09202MR213190
  73. [Ro1] O. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities. J. Funct. Anal.42, 358-367 (1981). Zbl0471.58027MR620581
  74. [Ro2] O. Rothaus. Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal.65, 358-367 (1986). Zbl0589.58036MR826433
  75. [Ro3] O. Rothaus. Logarithmic Sobolev inequalities and the growth of Lp norms (1996). Zbl0896.46021
  76. [SC1] L. Saloff-Coste. Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below. Colloquium Math.67, 109-121 (1994). Zbl0816.53027MR1292948
  77. [SC2] L. Saloff-Coste. Lectures on finite Markov chains. Ecole d'Eté de Probabilités de St-Flour 1996. Lecture Notes in Math.1665, 301-413 (1997). Springer-Verlag. Zbl0885.60061MR1490046
  78. [Sa] P.-M. Samson. Concentration of measure inequalities for Markov chains and Φ-mixing processes. Preprint (1998). MR1756011
  79. [Sc] M. Schmuckenschläger. Martingales, Poincaré type inequalities and deviations inequalities. J. Funct. Anal.155, 303-323 (1998). Zbl0924.58111MR1624545
  80. [St] D. Stroock. Logarithmic Sobolev inequalities for Gibbs states. Dirichlet forms, Varenna 1992. Lecture Notes in Math.1563, 194-228 (1993). Zbl0801.60056MR1292280
  81. [S-Z] D. Stroock, B. Zegarlinski. The logarithmic Sobolev inequality for continuous spin systems on a lattice. J. Funct. Anal.104, 299-326 (1992). Zbl0794.46025MR1153990
  82. [S-T] V.N. Sudakov, B.S. Tsirel'son. Extremal properties of half-spaces for spherically invariant measures. J. Soviet. Math.9, 9-18 (1978); translated from Zap. Nauch. Sem. L.O.M.I.41, 14-24 (1974). Zbl0395.28007MR365680
  83. [Tak] M. Takeda. On a martingale method for symmetric diffusion process and its applications. Osaka J. Math.26, 605-623 (1989). Zbl0717.60090MR1021434
  84. [Ta1] M. Talagrand. An isoperimetric theorem on the cube and the Khintchine-Kahane inequalities. Proc. Amer. Math. Soc.104, 905-909 (1988). Zbl0691.60015MR964871
  85. [Ta2] M. Talagrand. Isoperimetry and integrability of the sum of independent Banach space valued random variables. Ann. Probability17, 1546-1570 (1989). Zbl0692.60016MR1048946
  86. [Ta3] M. Talagrand. A new isoperimetric inequality for product measure. and the concentration of measure phenomenon. Israel Seminar (GAFA), Lecture Notes in Math.1469, 91-124 (1991). Springer-Verlag. Zbl0818.46047MR1122615
  87. [Ta4] M. Talagrand. Some isoperimetric inequalities and their applications. Proc. of the International Congress of Mathematicians, Kyoto 1990, vol. II, 1011-1024 (1992). Springer-Verlag. Zbl0791.60004MR1159286
  88. [Ta5] M. Talagrand. Sharper bounds for Gaussian and empirical processes. Ann. Probability22, 28-76 (1994). Zbl0798.60051MR1258865
  89. [Ta6] M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l'I.H.E.S.81, 73-205 (1995). Zbl0864.60013MR1361756
  90. [Ta7] M. Talagrand. A new look at independence. Ann. Probability, 24, 1-34 (1996). Zbl0858.60019MR1387624
  91. [Ta8] M. Talagrand. New concentration inequalities in product spaces. Invent. math.126, 505-563 (1996). Zbl0893.60001MR1419006
  92. [Ta9] M. Talagrand. Transportation cost for Gaussian and other product measures. Geometric and Funct. Anal.6, 587-600 (1996). Zbl0859.46030MR1392331
  93. [Wan] F.-Y. Wang. Logarithmic Sobolev inequalities on noncompact Riemannian manifolds. Proab. Theory Relat. Fields109, 417-424 (1997). Zbl0887.35012MR1481127
  94. [Wat] G.N. Watson. A treatise on the theory of Bessel functions. Cambridge Univ. Press (1944). Zbl0063.08184MR10746
  95. [Z-Y] J.Q. Zhong, H.C. Yang. On the estimate of the first eigenvalue of a compact Riemanian manifold. Sci. Sinica Ser. A 27 (12), 1265-1273 (1984). Zbl0561.53046MR794292

Citations in EuDML Documents

top
  1. Guangfei Li, Yu Miao, Huiming Peng, Liming Wu, Poincaré and log-Sobolev inequality for stationary Gaussian processes and moving average processes
  2. Aldéric Joulin, Nicolas Privault, Functional inequalities for discrete gradients and application to the geometric distribution
  3. Aldéric Joulin, Nicolas Privault, Functional inequalities for discrete gradients and application to the geometric distribution
  4. H. Djellout, A. Guillin, Large and moderate deviations for moving average processes
  5. H. Djellout, A. Guillin, L. Wu, Moderate deviations of empirical periodogram and non-linear functionals of moving average processes
  6. Liming Wu, A deviation inequality for non-reversible Markov processes
  7. Laurent Miclo, About projections of logarithmic Sobolev inequalities
  8. Djalil Chafaï, Gaussian maximum of entropy and reversed log-Sobolev inequality
  9. Franck Barthe, Neil O'Connell, Matchings and the variance of Lipschitz functions
  10. Patrick Cattiaux, Hypercontractivity for perturbed diffusion semigroups

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.