Compactness properties of vector-valued integration maps in locally convex spaces

S. Okada; S. Ricker

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 1-14
  • ISSN: 0010-1354

How to cite

top

Okada, S., and Ricker, S.. "Compactness properties of vector-valued integration maps in locally convex spaces." Colloquium Mathematicae 67.1 (1994): 1-14. <http://eudml.org/doc/210259>.

@article{Okada1994,
author = {Okada, S., Ricker, S.},
journal = {Colloquium Mathematicae},
keywords = {vector measure; projective limit; weakly compact map; integration map; locally convex space; space of all scalar-valued -integrable functions; topology of convergence in mean; compactness properties of the integration map; weakly compact},
language = {eng},
number = {1},
pages = {1-14},
title = {Compactness properties of vector-valued integration maps in locally convex spaces},
url = {http://eudml.org/doc/210259},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Okada, S.
AU - Ricker, S.
TI - Compactness properties of vector-valued integration maps in locally convex spaces
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 1
EP - 14
LA - eng
KW - vector measure; projective limit; weakly compact map; integration map; locally convex space; space of all scalar-valued -integrable functions; topology of convergence in mean; compactness properties of the integration map; weakly compact
UR - http://eudml.org/doc/210259
ER -

References

top
  1. [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York, 1985. 
  2. [2] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. Zbl0306.46020
  3. [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977. 
  4. [4] J. Diestel and J. J. Uhl, Progress in vector measures -- 1977-83, in: Measure Theory and its Applications (Proc. Conf. Sherbrooke, Canada, 1982), Lecture Notes in Math. 1033, Springer, Berlin, 1983, 144-192. 
  5. [5] P. G. Dodds and W. J. Ricker, Spectral measures and the Bade reflexivity theorem, J. Funct. Anal. 61 (1985), 136-163. Zbl0577.46043
  6. [6] N. Dunford and J. T. Schwartz, Linear Operators, Part III: Spectral Operators, Wiley-Interscience, New York, 1972. Zbl0128.34803
  7. [7] I. Kluvánek, Applications of vector measures, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 101-134. Zbl0587.28005
  8. [8] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, NorthHolland, Amsterdam, 1976. Zbl0316.46043
  9. [9] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. Zbl0179.17001
  10. [10] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. Zbl0195.14303
  11. [11] S. Okada and W. Ricker, Compactness properties of the integration map associated with a vector measure, Colloq. Math. 66 (1994), 175-185. Zbl0884.28008
  12. [12] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1970. 
  13. [13] E. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. 139 (1974). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.