# Compactness properties of vector-valued integration maps in locally convex spaces

Colloquium Mathematicae (1994)

- Volume: 67, Issue: 1, page 1-14
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topOkada, S., and Ricker, S.. "Compactness properties of vector-valued integration maps in locally convex spaces." Colloquium Mathematicae 67.1 (1994): 1-14. <http://eudml.org/doc/210259>.

@article{Okada1994,

author = {Okada, S., Ricker, S.},

journal = {Colloquium Mathematicae},

keywords = {vector measure; projective limit; weakly compact map; integration map; locally convex space; space of all scalar-valued -integrable functions; topology of convergence in mean; compactness properties of the integration map; weakly compact},

language = {eng},

number = {1},

pages = {1-14},

title = {Compactness properties of vector-valued integration maps in locally convex spaces},

url = {http://eudml.org/doc/210259},

volume = {67},

year = {1994},

}

TY - JOUR

AU - Okada, S.

AU - Ricker, S.

TI - Compactness properties of vector-valued integration maps in locally convex spaces

JO - Colloquium Mathematicae

PY - 1994

VL - 67

IS - 1

SP - 1

EP - 14

LA - eng

KW - vector measure; projective limit; weakly compact map; integration map; locally convex space; space of all scalar-valued -integrable functions; topology of convergence in mean; compactness properties of the integration map; weakly compact

UR - http://eudml.org/doc/210259

ER -

## References

top- [1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York, 1985.
- [2] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. Zbl0306.46020
- [3] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, 1977.
- [4] J. Diestel and J. J. Uhl, Progress in vector measures -- 1977-83, in: Measure Theory and its Applications (Proc. Conf. Sherbrooke, Canada, 1982), Lecture Notes in Math. 1033, Springer, Berlin, 1983, 144-192.
- [5] P. G. Dodds and W. J. Ricker, Spectral measures and the Bade reflexivity theorem, J. Funct. Anal. 61 (1985), 136-163. Zbl0577.46043
- [6] N. Dunford and J. T. Schwartz, Linear Operators, Part III: Spectral Operators, Wiley-Interscience, New York, 1972. Zbl0128.34803
- [7] I. Kluvánek, Applications of vector measures, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 101-134. Zbl0587.28005
- [8] I. Kluvánek and G. Knowles, Vector Measures and Control Systems, NorthHolland, Amsterdam, 1976. Zbl0316.46043
- [9] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. Zbl0179.17001
- [10] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165. Zbl0195.14303
- [11] S. Okada and W. Ricker, Compactness properties of the integration map associated with a vector measure, Colloq. Math. 66 (1994), 175-185. Zbl0884.28008
- [12] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1970.
- [13] E. Thomas, The Lebesgue-Nikodym theorem for vector-valued Radon measures, Mem. Amer. Math. Soc. 139 (1974).

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.