The unconditional pointwise convergence of orthogonal seriesin over a von Neumann algebra
Ewa Hensz; Ryszard Jajte; Adam Paszkiewicz
Colloquium Mathematicae (1996)
- Volume: 69, Issue: 2, page 167-178
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topHensz, Ewa, Jajte, Ryszard, and Paszkiewicz, Adam. "The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra." Colloquium Mathematicae 69.2 (1996): 167-178. <http://eudml.org/doc/210333>.
@article{Hensz1996,
abstract = {The paper is devoted to some problems concerning a convergence of pointwise type in the $L_2$-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here $L_2 = L_2(M,Φ)$ is the completion of M under the norm $x → |x|^2 = Φ(x*x)^\{1/2\}$.},
author = {Hensz, Ewa, Jajte, Ryszard, Paszkiewicz, Adam},
journal = {Colloquium Mathematicae},
keywords = {-finite von Neumann algebra; faithful normal state; almost surely convergent; Tandori theorem},
language = {eng},
number = {2},
pages = {167-178},
title = {The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra},
url = {http://eudml.org/doc/210333},
volume = {69},
year = {1996},
}
TY - JOUR
AU - Hensz, Ewa
AU - Jajte, Ryszard
AU - Paszkiewicz, Adam
TI - The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 167
EP - 178
AB - The paper is devoted to some problems concerning a convergence of pointwise type in the $L_2$-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here $L_2 = L_2(M,Φ)$ is the completion of M under the norm $x → |x|^2 = Φ(x*x)^{1/2}$.
LA - eng
KW - -finite von Neumann algebra; faithful normal state; almost surely convergent; Tandori theorem
UR - http://eudml.org/doc/210333
ER -
References
top- [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961.
- [2] C. J. K. Batty, The strong law of large numbers for states and traces of a W*-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), 177-191. Zbl0395.60033
- [3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer, New York, 1979. Zbl0421.46048
- [4] M. S. Goldstein, Theorems in almost everywhere convergence, J. Operator Theory 6 (1981), 233-311 (in Russian). Zbl0488.46053
- [5] E. Hensz, Strong laws of large numbers for orthogonal sequences in von Neumann algebras, in: Proc. Probability Theory on Vector Spaces IV, Łańcut 1987, Lecture Notes in Math. 1391, Springer, 1989, 112-124.
- [6] E. Hensz and R. Jajte, Pointwise convergence theorems in over a von Neumann algebra, Math. Z. 193 (1986), 413-429. Zbl0613.46056
- [7] E. Hensz, R. Jajte and A. Paszkiewicz, Topics in pointwise convergence in over a von Neumann algebra, Quantum Probab. Related Topics 9 (1994), 239-271.
- [8] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 229-236. Zbl0601.46058
- [9] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes in Math. 1110, Springer, Berlin, 1985.
- [10] R. Jajte, Almost sure convergence of iterates of contractions in noncommutative -spaces, Math. Z. 205 (1990), 165-176. Zbl0739.46048
- [11] R. Jajte, Strong Limit Theorems in Noncommutative -Spaces, Lecture Notes in Math. 1477, Springer, Berlin, 1991. Zbl0743.46069
- [12] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), 201-214. Zbl0338.46054
- [13] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A (1927), 81-115. Zbl53.0265.05
- [14] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. Zbl0612.46060
- [15] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. Zbl0051.34201
- [16] Ya. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. Zbl0365.46053
- [17] K. Tandori, Über die orthogonalen Funktionen X (unbedingte Konvergenz), Acta Sci. Math. (Szeged) 23 (1962), 185-221. Zbl0144.32103
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.