The unconditional pointwise convergence of orthogonal seriesin L 2 over a von Neumann algebra

Ewa Hensz; Ryszard Jajte; Adam Paszkiewicz

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 167-178
  • ISSN: 0010-1354

Abstract

top
The paper is devoted to some problems concerning a convergence of pointwise type in the L 2 -space over a von Neumann algebra M with a faithful normal state Φ [3]. Here L 2 = L 2 ( M , Φ ) is the completion of M under the norm x | x | 2 = Φ ( x * x ) 1 / 2 .

How to cite

top

Hensz, Ewa, Jajte, Ryszard, and Paszkiewicz, Adam. "The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra." Colloquium Mathematicae 69.2 (1996): 167-178. <http://eudml.org/doc/210333>.

@article{Hensz1996,
abstract = {The paper is devoted to some problems concerning a convergence of pointwise type in the $L_2$-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here $L_2 = L_2(M,Φ)$ is the completion of M under the norm $x → |x|^2 = Φ(x*x)^\{1/2\}$.},
author = {Hensz, Ewa, Jajte, Ryszard, Paszkiewicz, Adam},
journal = {Colloquium Mathematicae},
keywords = {-finite von Neumann algebra; faithful normal state; almost surely convergent; Tandori theorem},
language = {eng},
number = {2},
pages = {167-178},
title = {The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra},
url = {http://eudml.org/doc/210333},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Hensz, Ewa
AU - Jajte, Ryszard
AU - Paszkiewicz, Adam
TI - The unconditional pointwise convergence of orthogonal seriesin $L_2$ over a von Neumann algebra
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 167
EP - 178
AB - The paper is devoted to some problems concerning a convergence of pointwise type in the $L_2$-space over a von Neumann algebra M with a faithful normal state Φ [3]. Here $L_2 = L_2(M,Φ)$ is the completion of M under the norm $x → |x|^2 = Φ(x*x)^{1/2}$.
LA - eng
KW - -finite von Neumann algebra; faithful normal state; almost surely convergent; Tandori theorem
UR - http://eudml.org/doc/210333
ER -

References

top
  1. [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961. 
  2. [2] C. J. K. Batty, The strong law of large numbers for states and traces of a W*-algebra, Z. Wahrsch. Verw. Gebiete 48 (1979), 177-191. Zbl0395.60033
  3. [3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer, New York, 1979. Zbl0421.46048
  4. [4] M. S. Goldstein, Theorems in almost everywhere convergence, J. Operator Theory 6 (1981), 233-311 (in Russian). Zbl0488.46053
  5. [5] E. Hensz, Strong laws of large numbers for orthogonal sequences in von Neumann algebras, in: Proc. Probability Theory on Vector Spaces IV, Łańcut 1987, Lecture Notes in Math. 1391, Springer, 1989, 112-124. 
  6. [6] E. Hensz and R. Jajte, Pointwise convergence theorems in L 2 over a von Neumann algebra, Math. Z. 193 (1986), 413-429. Zbl0613.46056
  7. [7] E. Hensz, R. Jajte and A. Paszkiewicz, Topics in pointwise convergence in L 2 over a von Neumann algebra, Quantum Probab. Related Topics 9 (1994), 239-271. 
  8. [8] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 229-236. Zbl0601.46058
  9. [9] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes in Math. 1110, Springer, Berlin, 1985. 
  10. [10] R. Jajte, Almost sure convergence of iterates of contractions in noncommutative L 2 -spaces, Math. Z. 205 (1990), 165-176. Zbl0739.46048
  11. [11] R. Jajte, Strong Limit Theorems in Noncommutative L 2 -Spaces, Lecture Notes in Math. 1477, Springer, Berlin, 1991. Zbl0743.46069
  12. [12] E. C. Lance, Ergodic theorem for convex sets and operator algebras, Invent. Math. 37 (1976), 201-214. Zbl0338.46054
  13. [13] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A (1927), 81-115. Zbl53.0265.05
  14. [14] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. Zbl0612.46060
  15. [15] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. Zbl0051.34201
  16. [16] Ya. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. Zbl0365.46053
  17. [17] K. Tandori, Über die orthogonalen Funktionen X (unbedingte Konvergenz), Acta Sci. Math. (Szeged) 23 (1962), 185-221. Zbl0144.32103

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.