The bundle convergence in von Neumann algebras and their -spaces
Ewa Hensz; Ryszard Jajte; Adam Paszkiewicz
Studia Mathematica (1996)
- Volume: 120, Issue: 1, page 23-46
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHensz, Ewa, Jajte, Ryszard, and Paszkiewicz, Adam. "The bundle convergence in von Neumann algebras and their $L_2$-spaces." Studia Mathematica 120.1 (1996): 23-46. <http://eudml.org/doc/216318>.
@article{Hensz1996,
abstract = {A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.},
author = {Hensz, Ewa, Jajte, Ryszard, Paszkiewicz, Adam},
journal = {Studia Mathematica},
keywords = {bundle convergence; almost uniform convergence; von Neumann algebras; classical limit theorems},
language = {eng},
number = {1},
pages = {23-46},
title = {The bundle convergence in von Neumann algebras and their $L_2$-spaces},
url = {http://eudml.org/doc/216318},
volume = {120},
year = {1996},
}
TY - JOUR
AU - Hensz, Ewa
AU - Jajte, Ryszard
AU - Paszkiewicz, Adam
TI - The bundle convergence in von Neumann algebras and their $L_2$-spaces
JO - Studia Mathematica
PY - 1996
VL - 120
IS - 1
SP - 23
EP - 46
AB - A stronger version of almost uniform convergence in von Neumann algebras is introduced. This "bundle convergence" is additive and the limit is unique. Some extensions of classical limit theorems are obtained.
LA - eng
KW - bundle convergence; almost uniform convergence; von Neumann algebras; classical limit theorems
UR - http://eudml.org/doc/216318
ER -
References
top- [1] G. Alexits, Convergence Problems of Orthogonal Series, Pergamon Press, New York, 1961.
- [2] N. Dang-Ngoc, Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979), 273-280.
- [3] V. F. Gaposhkin, Criteria of the strong law of large numbers for some classes of stationary processes and homogeneous random fields, Theory Probab. Appl. 22 (1977), 295-319.
- [4] V. F. Gaposhkin, Individual ergodic theorem for normal operators in , Functional Anal. Appl. 15 (1981), 18-22. Zbl0457.47012
- [5] M. S. Goldstein, Theorems in almost everywhere convergence, J. Oper. Theory 6 (1981), 233-311 (in Russian).
- [6] E. Hensz and R. Jajte, Pointwise convergence theorems in over a von Neumann algebra, Math. Z. 193 (1986), 413-429. Zbl0613.46056
- [7] E. Hensz, R. Jajte and A. Paszkiewicz, The unconditional pointwise convergence of orthogonal series in over a von Neumann algebra, Colloq. Math. 69 (1995), 167-178. Zbl0856.46034
- [8] E. Hensz, R. Jajte and A. Paszkiewicz, On the almost uniform convergence in noncommutative -spaces, Probab. Math. Statist. 14 (1993), 347-358. Zbl0823.46063
- [9] R. Jajte, Strong limit theorems for orthogonal sequences in von Neumann algebras, Proc. Amer. Math. Soc. 94 (1985), 225-236. Zbl0601.46058
- [10] R. Jajte, Strong Limit Theorems in Noncommutative Probability, Lecture Notes Math. 1100, Springer, Berlin, 1985. Zbl0554.46033
- [11] R. Jajte, Strong Limit Theorems in Noncommutative -Spaces, Lecture Notes Math. 1477, Springer, Berlin, 1991. Zbl0743.46069
- [12] R. Jajte, Asymptotic formula for normal operators in non-commutative -space, in: Proc. Quantum Probability and Applications IV, Rome 1987, Lecture Notes in Math. 1396, Springer, 1989, 270-278.
- [13] B. Kümmerer, A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), 139-145. Zbl0379.46060
- [14] E. C. Lance, Ergodic theorem for convex sets and operator algebras, ibid. 37 (1976), 201-214. Zbl0338.46054
- [15] D. Menchoff [D. Men'shov], Sur les séries de fonctions orthogonales, Fund. Math. 4 (1923), 82-105. Zbl49.0293.01
- [16] W. Orlicz, Zur Theorie der Orthogonalreihen, Bull. Internat. Acad. Polon. Sci. Sér. A 1927, 81-115. Zbl53.0265.05
- [17] A. Paszkiewicz, Convergence in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. Zbl0612.46060
- [18] A. Paszkiewicz, A limit in probability in a W*-algebra is unique, ibid. 90 (1990), 429-444. Zbl0821.46081
- [19] D. Petz, Quasi-uniform ergodic theorems in von Neumann algebras, Bull. London Math. Soc. 16 (1984), 151-156. Zbl0535.46042
- [20] H. Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), 112-138. Zbl48.0485.05
- [21] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. 57 (1953), 401-457. Zbl0051.34201
- [22] Y. G. Sinai and V. V. Anshelevich, Some problems of non-commutative ergodic theory, Russian Math. Surveys 31 (1976), 157-174. Zbl0365.46053
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.