On uncountable collections of continua and their span

Dušan Repovš; Arkadij Skopenkov; Evgenij Ščepin

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 289-296
  • ISSN: 0010-1354

Abstract

top
We prove that if the Euclidean plane 2 contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree X 2 such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.

How to cite

top

Repovš, Dušan, Skopenkov, Arkadij, and Ščepin, Evgenij. "On uncountable collections of continua and their span." Colloquium Mathematicae 69.2 (1996): 289-296. <http://eudml.org/doc/210342>.

@article{Repovš1996,
abstract = {We prove that if the Euclidean plane $ℝ^2$ contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree $X ⊂ ℝ^2$ such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.},
author = {Repovš, Dušan, Skopenkov, Arkadij, Ščepin, Evgenij},
journal = {Colloquium Mathematicae},
keywords = {uncountable collection of compacta; deleted product; chainable continua; span; equivariant maps; symmetric span; tree-like continuum},
language = {eng},
number = {2},
pages = {289-296},
title = {On uncountable collections of continua and their span},
url = {http://eudml.org/doc/210342},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Repovš, Dušan
AU - Skopenkov, Arkadij
AU - Ščepin, Evgenij
TI - On uncountable collections of continua and their span
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 289
EP - 296
AB - We prove that if the Euclidean plane $ℝ^2$ contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree $X ⊂ ℝ^2$ such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.
LA - eng
KW - uncountable collection of compacta; deleted product; chainable continua; span; equivariant maps; symmetric span; tree-like continuum
UR - http://eudml.org/doc/210342
ER -

References

top
  1. [1] R. D. Anderson, Continuous collections of continuous curves, Duke Math. J. 21 (1954), 363-367. Zbl0056.16104
  2. [2] V. I. Arnold, Ordinary Differential Equations, Nauka, Moscow, 1971 (in Russian). 
  3. [3] B. J. Baker and M. Laidacker, Embedding uncountably many mutually exclusive continua into Euclidean space, Canad. Math. Bull. 32 (1989), 207-214. Zbl0677.57009
  4. [4] C. E. Burgess, Collections and sequences of continua in the plane I, II, Pacific J. Math. 5 (1955), 325-333; 11 (1961), 447-454. Zbl0065.38301
  5. [5] C. E. Burgess, Continua which have width zero, Proc. Amer. Math. Soc. 13 (1962), 477-481. Zbl0106.36801
  6. [6] P. E. Conner and E. E. Floyd, Fixed points free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. Zbl0106.16301
  7. [7] H. Cook, W. T. Ingram and A. Lelek, Eleven annotated problems about continua, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 295-302. 
  8. [8] J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138. Zbl0538.54026
  9. [9] D E. K. van Douwen, Uncountably many pairwise disjoint copies of one metrizable compactum in another, Topology Appl. 51 (1993), 87-91. Zbl0801.54010
  10. [10] W. T. Ingram, An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span, Fund. Math. 85 (1974), 73-78. Zbl0281.54014
  11. [11] H. Kato, A. Koyama and E. D. Tymchatyn, Mappings with zero surjective span, Houston J. Math. 17 (1991), 325-333. Zbl0765.54025
  12. [12] A. Lelek, Disjoint mappings and the span of the spaces, Fund. Math. 55 (1964), 199-214. Zbl0142.39802
  13. [13] P. Minc, On simplicial maps and chainable continua, Topology Appl. 57 (1994), 1-21. Zbl0853.54031
  14. [14] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88. Zbl54.0630.03
  15. [15] L. G. Oversteegen, On span and chainability of continua, Houston J. Math. 15 (1989), 573-593. Zbl0708.54028
  16. [16] L. Oversteegen and E. D. Tymchatyn, Plane strips and the span of continua I, II, ibid. 8 (1982), 129-142; 10 (1984), 255-266. Zbl0506.54022
  17. [17] C. R. Pittman, An elementary proof of the triod theorem, Proc. Amer. Math. Soc. 25 (1970), 919. Zbl0197.19501
  18. [18] D. Repovš and E. V. Ščepin, On the symmetric span of continua, Abstracts Amer. Math. Soc. 14 (1993), 319, No. 93T-54-42. 
  19. [19] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of X×I into Euclidean space, Houston J. Math. 21 (1995), 199-204. Zbl0856.57018
  20. [20] J. H. Roberts, Concerning atriodic continua, Monatsh. Math. 37 (1930), 223-230. Zbl56.1143.03
  21. [21] K. Sieklucki, A generalization of a theorem of K. Borsuk concerning the dimension of ANR-sets, Bull. Acad. Polon. Sci. 10 (1962), 433-463; Erratum, 12 (1964), 695. 
  22. [22] G. S. Young, Jr., A generalization of Moore's theorem on simple triods, Bull. Amer. Math. Soc. 5 (1944), 714. Zbl0060.40207

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.