On uncountable collections of continua and their span
Dušan Repovš; Arkadij Skopenkov; Evgenij Ščepin
Colloquium Mathematicae (1996)
- Volume: 69, Issue: 2, page 289-296
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topRepovš, Dušan, Skopenkov, Arkadij, and Ščepin, Evgenij. "On uncountable collections of continua and their span." Colloquium Mathematicae 69.2 (1996): 289-296. <http://eudml.org/doc/210342>.
@article{Repovš1996,
abstract = {We prove that if the Euclidean plane $ℝ^2$ contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree $X ⊂ ℝ^2$ such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.},
author = {Repovš, Dušan, Skopenkov, Arkadij, Ščepin, Evgenij},
journal = {Colloquium Mathematicae},
keywords = {uncountable collection of compacta; deleted product; chainable continua; span; equivariant maps; symmetric span; tree-like continuum},
language = {eng},
number = {2},
pages = {289-296},
title = {On uncountable collections of continua and their span},
url = {http://eudml.org/doc/210342},
volume = {69},
year = {1996},
}
TY - JOUR
AU - Repovš, Dušan
AU - Skopenkov, Arkadij
AU - Ščepin, Evgenij
TI - On uncountable collections of continua and their span
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 289
EP - 296
AB - We prove that if the Euclidean plane $ℝ^2$ contains an uncountable collection of pairwise disjoint copies of a tree-like continuum X, then the symmetric span of X is zero, sX = 0. We also construct a modification of the Oversteegen-Tymchatyn example: for each ε > 0 there exists a tree $X ⊂ ℝ^2$ such that σX < ε but X cannot be covered by any 1-chain. These are partial solutions of some well-known problems in continua theory.
LA - eng
KW - uncountable collection of compacta; deleted product; chainable continua; span; equivariant maps; symmetric span; tree-like continuum
UR - http://eudml.org/doc/210342
ER -
References
top- [1] R. D. Anderson, Continuous collections of continuous curves, Duke Math. J. 21 (1954), 363-367. Zbl0056.16104
- [2] V. I. Arnold, Ordinary Differential Equations, Nauka, Moscow, 1971 (in Russian).
- [3] B. J. Baker and M. Laidacker, Embedding uncountably many mutually exclusive continua into Euclidean space, Canad. Math. Bull. 32 (1989), 207-214. Zbl0677.57009
- [4] C. E. Burgess, Collections and sequences of continua in the plane I, II, Pacific J. Math. 5 (1955), 325-333; 11 (1961), 447-454. Zbl0065.38301
- [5] C. E. Burgess, Continua which have width zero, Proc. Amer. Math. Soc. 13 (1962), 477-481. Zbl0106.36801
- [6] P. E. Conner and E. E. Floyd, Fixed points free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. Zbl0106.16301
- [7] H. Cook, W. T. Ingram and A. Lelek, Eleven annotated problems about continua, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 295-302.
- [8] J. F. Davis, The equivalence of zero span and zero semispan, Proc. Amer. Math. Soc. 90 (1984), 133-138. Zbl0538.54026
- [9] D E. K. van Douwen, Uncountably many pairwise disjoint copies of one metrizable compactum in another, Topology Appl. 51 (1993), 87-91. Zbl0801.54010
- [10] W. T. Ingram, An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive span, Fund. Math. 85 (1974), 73-78. Zbl0281.54014
- [11] H. Kato, A. Koyama and E. D. Tymchatyn, Mappings with zero surjective span, Houston J. Math. 17 (1991), 325-333. Zbl0765.54025
- [12] A. Lelek, Disjoint mappings and the span of the spaces, Fund. Math. 55 (1964), 199-214. Zbl0142.39802
- [13] P. Minc, On simplicial maps and chainable continua, Topology Appl. 57 (1994), 1-21. Zbl0853.54031
- [14] R. L. Moore, Concerning triods in the plane and the junction points of plane continua, Proc. Nat. Acad. Sci. U.S.A. 14 (1928), 85-88. Zbl54.0630.03
- [15] L. G. Oversteegen, On span and chainability of continua, Houston J. Math. 15 (1989), 573-593. Zbl0708.54028
- [16] L. Oversteegen and E. D. Tymchatyn, Plane strips and the span of continua I, II, ibid. 8 (1982), 129-142; 10 (1984), 255-266. Zbl0506.54022
- [17] C. R. Pittman, An elementary proof of the triod theorem, Proc. Amer. Math. Soc. 25 (1970), 919. Zbl0197.19501
- [18] D. Repovš and E. V. Ščepin, On the symmetric span of continua, Abstracts Amer. Math. Soc. 14 (1993), 319, No. 93T-54-42.
- [19] D. Repovš, A. B. Skopenkov and E. V. Ščepin, On embeddability of X×I into Euclidean space, Houston J. Math. 21 (1995), 199-204. Zbl0856.57018
- [20] J. H. Roberts, Concerning atriodic continua, Monatsh. Math. 37 (1930), 223-230. Zbl56.1143.03
- [21] K. Sieklucki, A generalization of a theorem of K. Borsuk concerning the dimension of ANR-sets, Bull. Acad. Polon. Sci. 10 (1962), 433-463; Erratum, 12 (1964), 695.
- [22] G. S. Young, Jr., A generalization of Moore's theorem on simple triods, Bull. Amer. Math. Soc. 5 (1944), 714. Zbl0060.40207
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.