Measurability of functions with approximately continuous vertical sections and measurable horizontal sections

M. Laczkovich; Arnold Miller

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 299-308
  • ISSN: 0010-1354

How to cite

top

Laczkovich, M., and Miller, Arnold. "Measurability of functions with approximately continuous vertical sections and measurable horizontal sections." Colloquium Mathematicae 69.2 (1996): 299-308. <http://eudml.org/doc/210344>.

@article{Laczkovich1996,
author = {Laczkovich, M., Miller, Arnold},
journal = {Colloquium Mathematicae},
keywords = {measurability of functions; approximate continuity; separate continuity; real-valued measurable cardinal; random real model},
language = {eng},
number = {2},
pages = {299-308},
title = {Measurability of functions with approximately continuous vertical sections and measurable horizontal sections},
url = {http://eudml.org/doc/210344},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Laczkovich, M.
AU - Miller, Arnold
TI - Measurability of functions with approximately continuous vertical sections and measurable horizontal sections
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 299
EP - 308
LA - eng
KW - measurability of functions; approximate continuity; separate continuity; real-valued measurable cardinal; random real model
UR - http://eudml.org/doc/210344
ER -

References

top
  1. [1] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. Zbl0764.03018
  2. [2] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. Zbl0413.54016
  3. [3] A. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978. Zbl0382.26002
  4. [4] T. Carlson, Extending Lebesgue measure by infinitely many sets, Pacific J. Math. 115 (1984), 33-45. Zbl0582.28004
  5. [5] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461-465. Zbl0254.26011
  6. [6] R. O. Davies and J. Dravecký, On the measurability of functions of two variables, Mat. Časopis 23 (1973), 285-289. Zbl0262.28004
  7. [7] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1916), 161-248. Zbl45.0435.03
  8. [8] C. Freiling, Axioms of symmetry: throwing darts at the real number line, J. Symbolic Logic 51 (1986), 190-200. Zbl0619.03035
  9. [9] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506. Zbl0101.15502
  10. [10] Z. Grande, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 657-661. Zbl0287.28003
  11. [11] T. Jech, Set Theory, Academic Press, 1978. 
  12. [12] P. Komjáth, Some remarks on second category sets, Colloq. Math. 66 (1993), 57-62. Zbl0827.03031
  13. [13] K. Kunen, Random and Cohen reals, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 887-911. 
  14. [14] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966. 
  15. [15] M. Laczkovich and G. Petruska, Sectionwise properties and measurability of functions of two variables, Acta Math. Acad. Sci. Hungar. 40 (1982), 169-178. Zbl0519.26007
  16. [16] H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278-287. 
  17. [17] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, 1985. Zbl0607.31001
  18. [18] W. Rudin, Lebesgue's first theorem, in: Mathematical Analysis and Applications, Part B, Adv. Math. Suppl. Stud. 7b, Academic Press, 1981, 741-747. 
  19. [19] S. Saks, Theory of the Integral, Dover, 1964. 
  20. [20] W. Sierpiński, Sur les rapports entre l’existence des intégrales 0 1 f ( x , y ) d x , 0 1 f ( x , y ) d y , et 0 1 d x 0 1 f ( x , y ) d y , Fund. Math. 1 (1920), 142-147. Zbl47.0245.01
  21. [21] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56. Zbl0207.00905
  22. [22] F. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284. Zbl0305.54039
  23. [23] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. Zbl0038.20602

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.