# Measurability of functions with approximately continuous vertical sections and measurable horizontal sections

Colloquium Mathematicae (1996)

- Volume: 69, Issue: 2, page 299-308
- ISSN: 0010-1354

## Access Full Article

top## How to cite

topLaczkovich, M., and Miller, Arnold. "Measurability of functions with approximately continuous vertical sections and measurable horizontal sections." Colloquium Mathematicae 69.2 (1996): 299-308. <http://eudml.org/doc/210344>.

@article{Laczkovich1996,

author = {Laczkovich, M., Miller, Arnold},

journal = {Colloquium Mathematicae},

keywords = {measurability of functions; approximate continuity; separate continuity; real-valued measurable cardinal; random real model},

language = {eng},

number = {2},

pages = {299-308},

title = {Measurability of functions with approximately continuous vertical sections and measurable horizontal sections},

url = {http://eudml.org/doc/210344},

volume = {69},

year = {1996},

}

TY - JOUR

AU - Laczkovich, M.

AU - Miller, Arnold

TI - Measurability of functions with approximately continuous vertical sections and measurable horizontal sections

JO - Colloquium Mathematicae

PY - 1996

VL - 69

IS - 2

SP - 299

EP - 308

LA - eng

KW - measurability of functions; approximate continuity; separate continuity; real-valued measurable cardinal; random real model

UR - http://eudml.org/doc/210344

ER -

## References

top- [1] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. Zbl0764.03018
- [2] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. Zbl0413.54016
- [3] A. Bruckner, Differentiation of Real Functions, Lecture Notes in Math. 659, Springer, 1978. Zbl0382.26002
- [4] T. Carlson, Extending Lebesgue measure by infinitely many sets, Pacific J. Math. 115 (1984), 33-45. Zbl0582.28004
- [5] R. O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461-465. Zbl0254.26011
- [6] R. O. Davies and J. Dravecký, On the measurability of functions of two variables, Mat. Časopis 23 (1973), 285-289. Zbl0262.28004
- [7] A. Denjoy, Sur les fonctions dérivées sommables, Bull. Soc. Math. France 43 (1916), 161-248. Zbl45.0435.03
- [8] C. Freiling, Axioms of symmetry: throwing darts at the real number line, J. Symbolic Logic 51 (1986), 190-200. Zbl0619.03035
- [9] C. Goffman, C. J. Neugebauer and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497-506. Zbl0101.15502
- [10] Z. Grande, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 657-661. Zbl0287.28003
- [11] T. Jech, Set Theory, Academic Press, 1978.
- [12] P. Komjáth, Some remarks on second category sets, Colloq. Math. 66 (1993), 57-62. Zbl0827.03031
- [13] K. Kunen, Random and Cohen reals, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 887-911.
- [14] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
- [15] M. Laczkovich and G. Petruska, Sectionwise properties and measurability of functions of two variables, Acta Math. Acad. Sci. Hungar. 40 (1982), 169-178. Zbl0519.26007
- [16] H. Lebesgue, Sur l'approximation des fonctions, Bull. Sci. Math. 22 (1898), 278-287.
- [17] J. Lukeš, J. Malý and L. Zajíček, Fine Topology Methods in Real Analysis and Potential Theory, Lecture Notes in Math. 1189, Springer, 1985. Zbl0607.31001
- [18] W. Rudin, Lebesgue's first theorem, in: Mathematical Analysis and Applications, Part B, Adv. Math. Suppl. Stud. 7b, Academic Press, 1981, 741-747.
- [19] S. Saks, Theory of the Integral, Dover, 1964.
- [20] W. Sierpiński, Sur les rapports entre l’existence des intégrales ${\int}_{0}^{1}f(x,y)dx$, ${\int}_{0}^{1}f(x,y)dy$, et ${\int}_{0}^{1}dx{\int}_{0}^{1}f(x,y)dy$, Fund. Math. 1 (1920), 142-147. Zbl47.0245.01
- [21] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56. Zbl0207.00905
- [22] F. Tall, The density topology, Pacific J. Math. 62 (1976), 275-284. Zbl0305.54039
- [23] Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1-54. Zbl0038.20602

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.