Nonnegative linearization of orthogonal polynomials

Ryszard Szwarc

Colloquium Mathematicae (1996)

  • Volume: 69, Issue: 2, page 309-316
  • ISSN: 0010-1354

How to cite

top

Szwarc, Ryszard. "Nonnegative linearization of orthogonal polynomials." Colloquium Mathematicae 69.2 (1996): 309-316. <http://eudml.org/doc/210345>.

@article{Szwarc1996,
author = {Szwarc, Ryszard},
journal = {Colloquium Mathematicae},
keywords = {positive linearization coefficients; third order linear differential equation; singular oscillators},
language = {eng},
number = {2},
pages = {309-316},
title = {Nonnegative linearization of orthogonal polynomials},
url = {http://eudml.org/doc/210345},
volume = {69},
year = {1996},
}

TY - JOUR
AU - Szwarc, Ryszard
TI - Nonnegative linearization of orthogonal polynomials
JO - Colloquium Mathematicae
PY - 1996
VL - 69
IS - 2
SP - 309
EP - 316
LA - eng
KW - positive linearization coefficients; third order linear differential equation; singular oscillators
UR - http://eudml.org/doc/210345
ER -

References

top
  1. [1] R. Askey, Linearization of the product of orthogonal polynomials, in: Problems in Analysis (R. Gunning, ed.), Princeton University Press, Princeton, N.J., 1970, 223-228. 
  2. [2] R. Askey and S. Wainger, A dual convolution structure for Jacobi polynomials, in: Proc. Conference on Orthogonal Expansions and their Continuous Analogues, D. Haimo (ed.), Southern Illinois University Press, Carbondale, 1967, 25-36. Zbl0174.36305
  3. [3] R. Askey and J. A. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985). Zbl0572.33012
  4. [4] T. Chihara, An Introduction to Orthogonal Polynomials, Math. Appl. 13, Gordon and Breach, New York, 1978. Zbl0389.33008
  5. [5] J. Dougall, A theorem of Sonine in Bessel functions, with two extensions to spherical harmonics, Proc. Edinburgh Math. Soc. 37 (1919), 33-47. 
  6. [6] G. Gasper, Linearization of the product of Jacobi polynomials. I, II, Canad. J. Math. 22 (1970), 171-175, 582-593. Zbl0191.35002
  7. [7] H. Haddad, Chain sequence preserving linear transformations, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 78-84. Zbl0191.35304
  8. [8] S. Igari and Y. Uno, Banach algebras related to the Jacobi polynomials, Tôhoku Math. J. 21 (1969), 668-673. Zbl0192.48402
  9. [9] L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343. 
  10. [10] A. L. Schwartz, l 1 -convolution algebras: representation and factorization, Z. Wahrsch. Verw. Gebiete 41 (1977), 161-176. Zbl0357.43004
  11. [11] G. Szegö, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., Providence, R.I., 4th ed., 1975. 
  12. [12] R. Szwarc, Orthogonal polynomials and a discrete boundary value problem, I, SIAM J. Math. Anal. 23 (1992), 959-964. Zbl0772.42013
  13. [13] R. Szwarc, Orthogonal polynomials and a discrete boundary value problem, II, ibid., 965-969. Zbl0772.42014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.