### $\mathbb{P}$-species and the $q$-Mehler formula.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We study the condition on expanding an analytic several variables function in terms of products of the homogeneous generalized Al-Salam-Carlitz polynomials. As applications, we deduce bilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. We also gain multilinear generating functions for the homogeneous generalized Al-Salam-Carlitz polynomials. Moreover, we obtain generalizations of Andrews-Askey integrals and Ramanujan $q$-beta integrals. At last, we derive $U(n+1)$...

350 years ago in Spring of 1655 Sir William Brouncker on a request by John Wallis obtained a beautiful continued fraction for 4/π. Brouncker never published his proof. Many sources on the history of Mathematics claim that this proof was lost forever. In this paper we recover the original proof from Wallis' remarks presented in his Arithmetica Infinitorum. We show that Brouncker's and Wallis' formulas can be extended to MacLaurin's sinusoidal spirals via related Euler's products. We derive Ramanujan's...

The present paper deals with certain generating functions and recurrence relations for $q$-Laguerre polynomials through the use of the ${T}_{k,q,x}$-operator introduced in an earlier paper [7].

Several ways to embed q-deformed versions of the Heisenberg algebra into the classical algebra itself are presented. By combination of those embeddings it becomes possible to transform between q-phase-space and q-oscillator realizations of the q-Heisenberg algebra. Using these embeddings the corresponding Schrödinger equation can be expressed by various difference equations. The solutions for two physically relevant cases are found and expressed as Stieltjes Wigert polynomials.