Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
Colloquium Mathematicae (1996)
- Volume: 70, Issue: 1, page 41-58
 - ISSN: 0010-1354
 
Access Full Article
topHow to cite
topBenabas, Mourad. "Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé." Colloquium Mathematicae 70.1 (1996): 41-58. <http://eudml.org/doc/210395>.
@article{Benabas1996,
	author = {Benabas, Mourad},
	journal = {Colloquium Mathematicae},
	keywords = {super- and subquadratic potentials; second-order Hamiltonian system; minimality of periods; solutions},
	language = {eng},
	number = {1},
	pages = {41-58},
	title = {Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé},
	url = {http://eudml.org/doc/210395},
	volume = {70},
	year = {1996},
}
TY  - JOUR
AU  - Benabas, Mourad
TI  - Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
JO  - Colloquium Mathematicae
PY  - 1996
VL  - 70
IS  - 1
SP  - 41
EP  - 58
LA  - eng
KW  - super- and subquadratic potentials; second-order Hamiltonian system; minimality of periods; solutions
UR  - http://eudml.org/doc/210395
ER  - 
References
top- [1] A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985. Zbl0623.58013
 - [2] A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987.
 - [3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066
 - [4] A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003. Zbl0818.35028
 - [5] M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992.
 - [6] I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78. Zbl0537.58018
 - [7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989. Zbl0707.70003
 - [8] I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188. Zbl0594.58035
 - [9] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36. Zbl0601.58035
 - [10] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972.
 - [11] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570. Zbl0573.58007
 - [12] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.