Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé

Mourad Benabas

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 1, page 41-58
  • ISSN: 0010-1354

How to cite

top

Benabas, Mourad. "Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé." Colloquium Mathematicae 70.1 (1996): 41-58. <http://eudml.org/doc/210395>.

@article{Benabas1996,
author = {Benabas, Mourad},
journal = {Colloquium Mathematicae},
keywords = {super- and subquadratic potentials; second-order Hamiltonian system; minimality of periods; solutions},
language = {eng},
number = {1},
pages = {41-58},
title = {Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé},
url = {http://eudml.org/doc/210395},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Benabas, Mourad
TI - Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 41
EP - 58
LA - eng
KW - super- and subquadratic potentials; second-order Hamiltonian system; minimality of periods; solutions
UR - http://eudml.org/doc/210395
ER -

References

top
  1. [1] A. Ambrosetti and V. Coti Zelati, Solutions with minimal period for Hamiltonian systems in potential well, ISAS, 1985. Zbl0623.58013
  2. [2] A. Assem, Thèse de docteur en science, Paris-Dauphine, 1987. 
  3. [3] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. Zbl0641.47066
  4. [4] A. Bahri and P. L. Lions, Solutions of superlinear elliptic equations and their Morse indices, Ceremade, no. 9003. Zbl0818.35028
  5. [5] M. Benabas, Thèse de magister, U.S.T.H.B.-Alger, 1992. 
  6. [6] I. Ekeland, Une théorie de Morse pour les systèmes Hamiltoniens convexes, Ann. Inst. H. Poincaré 1 (1984), 19-78. Zbl0537.58018
  7. [7] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer, 1989. Zbl0707.70003
  8. [8] I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Invent. Math. 81 (1985), 155-188. Zbl0594.58035
  9. [9] I. Ekeland and H. Hofer, Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math. 40 (1987), 1-36. Zbl0601.58035
  10. [10] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels, Dunod et Gauthier-Villars, 1972. 
  11. [11] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. 31 (1985), 556-570. Zbl0573.58007
  12. [12] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, Springer, 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.