Une théorie de Morse pour les systèmes hamiltoniens convexes

Ivar Ekeland

Annales de l'I.H.P. Analyse non linéaire (1984)

  • Volume: 1, Issue: 1, page 19-78
  • ISSN: 0294-1449

How to cite

top

Ekeland, Ivar. "Une théorie de Morse pour les systèmes hamiltoniens convexes." Annales de l'I.H.P. Analyse non linéaire 1.1 (1984): 19-78. <http://eudml.org/doc/78065>.

@article{Ekeland1984,
author = {Ekeland, Ivar},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Morse index; closed trajectories; periodic solutions; transversality},
language = {fre},
number = {1},
pages = {19-78},
publisher = {Gauthier-Villars},
title = {Une théorie de Morse pour les systèmes hamiltoniens convexes},
url = {http://eudml.org/doc/78065},
volume = {1},
year = {1984},
}

TY - JOUR
AU - Ekeland, Ivar
TI - Une théorie de Morse pour les systèmes hamiltoniens convexes
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1984
PB - Gauthier-Villars
VL - 1
IS - 1
SP - 19
EP - 78
LA - fre
KW - Morse index; closed trajectories; periodic solutions; transversality
UR - http://eudml.org/doc/78065
ER -

References

top
  1. [1] R. Abraham et J. Robbin, Transversal mappings and flows. Benjamin. Zbl0171.44404MR240836
  2. [2] H. Amann et E. Zehnder, Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equationsAnn. Sc. Norm. Sup. Pisa, t. 7, 1980, p. 539-603. Zbl0452.47077MR600524
  3. [3] V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires. Éditions Mir, 1980 (original russe, 1978). Zbl0455.34001MR626685
  4. [4] V. Arnold, Méthodes mathématiques de la mécanique classique. Éditions Mir, 1974 (original russe, 1972). Zbl0385.70001
  5. [5] W. Ballmann, G. Thorbergsson et W. Ziller, Closed geodesies on positively curved manifolds. Annals of Math., t. 116, 1982, p. 213-247. Zbl0495.58010MR672836
  6. [6] H. Berestycki, J.M. Lasry, G. Mancini et B. Ruf, Existence of multiple periodic orbits on starshaped Hamiltonian surfaces. Preprint, 1983. Zbl0542.58029MR691017
  7. [7] G. Birkhoff, Dynamical systems. AMS Colloquium Publications, 1927 (réédité, 1966). Zbl53.0732.01MR209095JFM53.0732.01
  8. [8] R. Bott, Non-degenerate critical manifolds. Ann. of Math., 1954, p. 248-261. Zbl0058.09101
  9. [9] R. Bott, On the iteration of closed geodesics and Sturm intersection theory. Comm. PAM, t. 9, 1956, p. 176-206. Zbl0074.17202MR90730
  10. [10] R. Bott, Morse theory, old and new. Bull. AMS (New Series), t. 7, 1982, p. 331-358. Zbl0505.58001MR663786
  11. [11] F. Clarke, Periodic solutions of Hamiltonian inclusions. J. Diff. Eq., t. 40, 1980, p. 1-6. Zbl0461.34030MR614215
  12. [12] F. Clarke et I. Ekeland, Hamiltonian trajectories having prescribed minimal period. Comm. Pure App. Math., t. 33, 1980, p. 103-116. Zbl0403.70016MR562546
  13. [13] C. Conley et E. Zehnder, Morse type index theory for flows and periodic solutions for Hamiltonian equations. Comm. Pure App. Math., to appear. Zbl0559.58019MR733717
  14. [14] C. Croke et A. Weinstein, Closed curves on convex hypersurfaces and periods of nonlinear oscillations. Inv. Math., t. 64, 1981, p. 199-202. Zbl0471.70020MR629469
  15. [15] J. Duistermaat, On the Morse index in variational calculus. Advances in Math., t. 21, 1976, p. 173-195. Zbl0361.49026MR649277
  16. [16] I. Ekeland, Periodic solutions of Hamilton's equations and a theorem of P. Rabinowitz. J. Diff. Eq. t. 34, 1979, p. 523-534. Zbl0446.70019MR555325
  17. [17] I. Ekeland et J.M. Lasry, On the number of closed trajectories for a Hamiltonian flow on a convex energy surface. Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
  18. [18] I. Ekeland et R. Temam, Analyse convexe et problèmes variationnels. Dunod-Gauthier-Villars. Zbl0281.49001MR463993
  19. [19] I. Gelfand et V. Lidsky, On the structure of the regions of stability of linear canonical systems of differential equations with periodic coefficients. Uspekhi Math. Naouk, t. 10, 1955, p. 3-40 (AMS Translation, t. 8, 1958, p. 143-181). Zbl0079.10905MR73767
  20. [20] S. Jorna, ed., Topics is nonlinear dynamics. AIP Conference Proceedings, 1978. 
  21. [21] Klingenberg, Lectures on closed geodesics. Springer, 1981. Zbl0397.58018
  22. [22] M. Krasnosellskii, Topological methods in the theory of nonlinear integral equations. Pergamon Press. 
  23. [23] M. Krein, Generalisation of certain investigations of A.M. Liapounov on linear differential equations with periodic coefficients. Doklady Akad. Naouk, USSR, t. 73, 1950, p. 445-448. Zbl0041.05602MR36379
  24. [24] W. Meyer, Kritische Mannigfaltigkeiten in Hilbertmannigfaltigkeiten. Math. Ann., t. 170, 1967, p. 45-66. Zbl0142.21604MR225345
  25. [25] V. Nemytskii et V. Stepanov, Qualitative theory of differential equations. Princeton University Press, 1960. Zbl0089.29502MR121520
  26. [26] H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars, p. 1892- 1899. 
  27. [27] R. Robinson, The C1 closing lemma, preprint. Zbl0403.58020
  28. [28] M. Struwe, On a critical point theory for minimal surfaces spanning a wire. Bonn preprint SFB n° 569. 
  29. [29] V. Yakubovich et V. Starzhinskii, Linear differential equations with periodic coefficients. Halsted Press, John Wiley et Sons. Zbl0308.34001
  30. [30] I. Ekeland, Dualité et stabilité des systèmes hamiltoniens, CRAS Paris, t. 294, 1982, p. 673-676. Zbl0491.70021MR666432
  31. [31] I. Ekeland, Une théorie de Morse pour les systèmes hamiltoniens, CRAS Paris, t. 296, 1983, p. 117-120. Zbl0566.58014MR691379

Citations in EuDML Documents

top
  1. V. Brousseau, Espaces de Krein et index des systèmes hamiltoniens
  2. A. Bahri, P. H. Rabinowitz, Periodic solutions of hamiltonian systems of 3-body type
  3. Andrzej Szulkin, Morse theory and existence of periodic solutions of convex hamiltonian systems
  4. Mourad Benabas, Étude d'un système différentiel non linéaire régissant un phénomène gyroscopique forcé
  5. Claude Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d'action et indice des systèmes hamiltoniens
  6. Chun-Gen Liu, Yiming Long, Hyperbolic characteristics on star-shaped hypersurfaces
  7. I. Ekeland, L. Lassoued, Multiplicité des trajectoires fermées de systèmes hamiltoniens connexes
  8. Antonio Ambrosetti, Vittorio Coti Zelati, Solutions with minimal period for hamiltonian systems in a potential well
  9. Yiming Long, The minimal period problem of classical hamiltonian systems with even potentials
  10. Helmut Hofer, Lagrangian embeddings and critical point theory

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.