The duality correspondence of infinitesimal characters

Tomasz Przebinda

Colloquium Mathematicae (1996)

  • Volume: 70, Issue: 1, page 93-102
  • ISSN: 0010-1354

Abstract

top
We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.

How to cite

top

Przebinda, Tomasz. "The duality correspondence of infinitesimal characters." Colloquium Mathematicae 70.1 (1996): 93-102. <http://eudml.org/doc/210401>.

@article{Przebinda1996,
abstract = {We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.},
author = {Przebinda, Tomasz},
journal = {Colloquium Mathematicae},
keywords = {infinitesimal characters; representations; Howe's duality theorem; dual pairs},
language = {eng},
number = {1},
pages = {93-102},
title = {The duality correspondence of infinitesimal characters},
url = {http://eudml.org/doc/210401},
volume = {70},
year = {1996},
}

TY - JOUR
AU - Przebinda, Tomasz
TI - The duality correspondence of infinitesimal characters
JO - Colloquium Mathematicae
PY - 1996
VL - 70
IS - 1
SP - 93
EP - 102
AB - We determine the correspondence of infinitesimal characters of representations which occur in Howe's Duality Theorem. In the appendix we identify the lowest K-types, in the sense of Vogan, of the unitary highest weight representations of real reductive dual pairs with at least one member compact.
LA - eng
KW - infinitesimal characters; representations; Howe's duality theorem; dual pairs
UR - http://eudml.org/doc/210401
ER -

References

top
  1. [1] J. D. Adams, Discrete spectrum of the reductive dual pair (O(p,q), Sp(2m)), Invent. Math. 74 (1983), 449-475. Zbl0561.22011
  2. [2] J. D. Adams, Unitary highest weight modules, preprint. Zbl0623.22014
  3. [3] N. Bourbaki, Groupes et Algèbres de Lie, Hermann, Paris, 1968. 
  4. [4] T. Y. Enright, R. Howe and N. R. Wallach, A classification of unitary highest weight modules, in: Representation Theory of Reductive Groups, P. C. Trombi (ed.), Birkhäuser, Boston, 1983, 97-143. Zbl0535.22012
  5. [5] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, 1962. 
  6. [6] R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), 539-570. Zbl0674.15021
  7. [7] R. Howe, Transcending the classical invariant theory, J. Amer. Math. Soc. 74 (1989), 449-475. Zbl0716.22006
  8. [8] R. Howe, θ-series and invariant theory, in: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, R.I., 1979, 275-285. 
  9. [9] R. Howe, manuscript in preparation on dual pairs. 
  10. [10] R. Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, in: Lectures in Appl. Math. 21, Amer. Math. Soc., Providence, R.I., 1985, 179-207. Zbl0558.22018
  11. [11] R. Howe, On a notion of rank for unitary representations of the classical groups, in: Harmonic Analysis and Group Representations, Liguori, Napoli, 1982, 223-331. 
  12. [12] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, Berlin, 1972. Zbl0254.17004
  13. [13] N. Jacobson, Basic Algebra I, W. H. Freeman, 1974. 
  14. [14] N. Jacobson, Basic Algebra II, W. H. Freeman, 1980. 
  15. [15] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44 (1978), 1-97. Zbl0375.22009
  16. [16] A. Knapp, Representation Theory of Semisimple Groups - an Overview Based on Examples, Princeton University Press, Princeton, N.J., 1986. Zbl0604.22001
  17. [17] A. Knapp and D. Vogan, Jr., Duality theorems in the relative Lie algebra cohomology, preprint. 
  18. [18] R. Parthasarathy, Criteria for the unitarizability of some highest weight modules, Proc. Indian Acad. Sci. 89 (1980), 1-24. Zbl0434.22011
  19. [19] D. Vogan, Jr., Representation Theory of Real Reductive Lie Groups, Birkhäuser, Boston, 1981. 
  20. [20] D. Vogan, Classifying representations by lowest K-types, in: Lectures in Appl. Math. 21, Amer. Math. Soc., 1985, 179-207. 
  21. [21] H. Weyl, The Classical Groups, Princeton University Press, Princeton, N.J., 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.